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Abstract

This study is concerned with practical performances of the multiple priors portfolio based
on mean-variance preference. The multiple priors portfolio is designed to be robust to model
uncertainty as known as ambiguity. The out-of-sample back test find the following two em-
pirical properties of the multiple priors portfolio: 1) the multiple priors portfolio tends to have
a better performance when the number of the assets is large, and 2) it has less turnovers than
the standard mean-variance efficient portfolios.
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The mean-variance efficient portfolio achieves in theory the most efficient balance between return on
investment (measured by mean) and associated risk (measured by variance). However, many empirical
studies report empirical failures of the mean-variance efficient portfolio (e.g., Jagannathan and Ma (2003)
and DeMiguel et al. (2009)). One reason of these empirical failures is that estimation errors of the sam-
ple moments erode the theoretical advantage of the mean-variance efficient portfolio. On the other hand,
researchers develop portfolio selection rules under inevitable estimation errors. A typical example is ambi-
guity aversion: a characteristic of preferences that people do not like the choice associated with the event
whose occurrence probability is unknown. The portfolio selection rules based on ambiguity aversion are
suggested by many scholars including Garlappi et al. (2007), Pflug et al. (2012) and Shigeta (2017). How-
ever, how these portfolios work in reality is less investigated. Therefore, this study examines performances
of the portfolios in the back test.

Throughout the paper, I denote by µ and Σ the expected return vector and covariance matrix of the
risky assets returns. Furthermore, I assume the number of the risky assets is N , and it is more than 2. For
convenience, let 1N denote an N -dimensional vector whose all elements are 1, and I use IN to denote an
N -dimensional identity matrix. I also use the superscript > to indicate the transpose of a vector or matrix.

The multiple priors model is one typical example of decision making under ambiguity. Shigeta (2017)
extends the multiple priors model suggested by Garlappi et al. (2007) to include the priors for variances and
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covariances, in which the investor solves the following max-min problem.

max
w

min
(θ,V )

(µ+ θ)>w − γ

2
w>(Σ + V )w,

subject to θ>(Σ + V )−1θ ≤ (ηθ)2,

‖V ‖2F ≤ (ηV )2‖Σ‖2F ,
and w>1N = 1,

(1)

where ηθ and ηV are positive constants, and ‖ · ‖F is the Frobenius norm operator. The problem (1) is a
version of the max-min expected utility optimization developed by Gilboa and Schmeidler (1989). θ and
V can be regarded as an estimation error of the mean vector µ and covariance matrix Σ. The investor first
takes a minimum of his or her mean-variance objective over θ and V — so he or she considers the worst
case in which the estimated moments deviate from true values, and next maximizes the objective over the
portfolio w. The investor recognizes the errors by two conventional statistical measures: a credible interval
of the mean vector and a relative least square errors of the covariance matrix. The two constants ηθ and ηV

therefore represent the degrees of the investor’s confidence that his or her estimation is true. Large ηθ and
ηV imply that the investor is less confident in estimation accuracy. ηθ is the upper bound of the credible
interval of the mean vector, so it represents the degree of confidence in the mean vector estimation. On
the other hand, ηV represents the degree of confidence in the covariance matrix estimation. Garlappi et al.
(2007) consider the case that there is only a mean estimation error, and Shigeta (2017) adds a variance
estimation error.

According to Shigeta (2017), the optimal portfolio in the problem (1) is

wMP :=
1

γ + ηθ/ψ∗

(
Σ + ηV ‖Σ‖F IN

)−1(
µ− BMP − (γ + ηθ/ψ∗)

AMP
1N

)
, (2)

where

AMP = 1>N

(
Σ + ηV ‖Σ‖F IN

)−1
1N , BMP = µ>

(
Σ + ηV ‖Σ‖F IN

)−1
1N ,

CMP = µ>
(

Σ + ηV ‖Σ‖F IN
)−1

µ, DMP = AMPCMP −B2
MP ,

and ψ∗ is the unique positive solution to the following quartic equation.

AMP (ψ∗)2 =
DMP

(γ + ηθ/ψ∗)2
+ 1.

As shown in Shigeta (2017), the optimal portfolio wMP has an analytical property when the parameters
γ, ηθ, and ηV tend to go to infinity. If γ or ηθ tends to go to infinity, wMP converges to the global minimum-
variance portfolio under the multiple priors for covariances, i.e.,

lim
γ or ηθ→∞

wMP =
1

AMP

(
Σ + ηV ‖Σ‖F IN

)−1
1N .

On the other hand, if ηV tends to go to infinity, wMP converges to the equally weighted portfolio, i.e.,

lim
ηV→∞

wMP =
1

N
1N .
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Furthermore, the multiple priors optimal portfolio (2) does not satisfy the two-fund separation theorem.
The two-fund separation theorem states that every mean-variance efficient portfolio is a linear combination
of two given mean-variance efficient portfolios. However, for any pair of given portfolios, the multiple
priors optimal portfolio (2) cannot be represented by a linear combination of the given portfolios for any
ηV . Therefore, the multiple priors optimal portfolio (2) has different implication to portfolio selection in
the standard mean-variance framework.

In the paper, I consider two multiple priors optimal portfolios. The first has static parameters ηθ and ηV ,
which is called MP. I set ηθ = 0.3 and ηV = 0.1. The other has time-varying parameters ηθ and ηV . The
dynamics of these parameters depends on the ad-hoc rule by Shigeta (2017) as follows. Let µ̂Mt and Σ̂Mt be
a sample mean vector and covariance matrix at time t based on past M observations. The time-varying ηθt
and ηVt are defined as

ηθt =

√
(µ̂Mt − µ̂Lt )>(Σ̂Mt )−1(µ̂Mt − µ̂Lt ), and ηVt = α

‖Σ̂Mt − Σ̂Lt ‖F
‖Σ̂Mt ‖F

, (3)

where M and L are a length of estimation window with M > L, and α is a constant. The investor uses
µ̂Mt and Σ̂Mt as µ and Σ in the portfolio (2). Therefore, the ad hoc rule (3) implies that the investor’s
ambiguity for µ̂Mt and Σ̂Mt is large if the recent sample-based estimators µ̂Lt and Σ̂Lt deviate from the long-
term sample-based estimators µ̂Mt and Σ̂Mt . Shigeta (2017) finds that the ad hoc rule works well in his brief
back test. The value of α is 0.1 according to Shigeta (2017). This portfolio is called MP-TV in the paper.

I also consider the traditional mean-variance efficient portfolio. The traditional mean-variance efficient
portfolio (dubbed MV) is a solution to the problem (1) when ηθ = ηV = 0. Furthermore, the following
three other portfolios are examined for benchmarks.1 The first one is the global minimum-variance portfolio
(dubbed GMV), which attains the smallest variance of all the portfolio containing only the risky assets. It
is a solution to a minimization problem with the objective w>Σw subject to 1>Nw = 1. Analytically, GMV
is expressed as Σ−11N/1

>
NΣ−11N . Next, the (normalized) tangency portfolio (dubbed TP) is expressed as

Σ−1(µ − rf )/1>NΣ−1(µ − rf ) in which rf is the risk-free rate. A unnormalized version of TP attains the
highest Sharpe ratio in the presence of the risk-free asset. Finally, I consider the equally weighted portfolio
(dubbed EW). EW invests the same amount of money in each asset. Its analytical expression is 1N/N . In
contrast to the other portfolios considered in the paper, EW does not have any information about distribution
of the risky assets. Therefore, EW does not involve any estimation error while it also does not have any
theoretical advantage.

In the paper, I conduct an out-of-sample back test in the absence of the risk-free asset. For the asset uni-
verse, five data sets of stock indexes returns are considered: ME/BM 6, ME/BM 25, Industry 10, Industry
49, and MSCI 4. ME/BM 6 consists of the six Fama-French style size- and book-to-market-sorted portfo-
lios. Each of them is a value-wighted index of the stocks sorted by size and book-to-market. ME/BM 25 is
a 25-groups version of ME/BM 6. ME/BM 6 and 25 are obtained from the Ken French website.2 Industry
10 consists of returns on 10 industry portfolios in the United States (US). These industries are Consumer-
Discretionary, Consumer-Staples, Manufacturing, Energy, High-Tech, Telecommunication, Wholesale and
Retail, Health, Utilities, and Others. On the other hand, Industry 49 consists of returns on 49 industry port-

1I consider more portfolio selection rules in the original paper.
2I thank Ken French for providing the data set via his website.
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folios in the US. Industry 10 and 49 are also obtained from the Ken French website. MSCI 4 consists of
returns on the four MSCI dollar-valued international equity indexes including the US, the United Kingdom,
Japan, and Germany. These MSCI indexes data are obtained from the Thompson Reuters Datastream. All
the five data sets are monthly returns from January 1976 to December 2015. For the risk-free rate, I use
monthly returns over the 90-day T-bill by the Ken French website. The investment horizon covers from
January 1981 to December 2015. The length of estimation window is M = 60, and the length of MP-TV’s
recent estimation window L is 36.

The investor chooses his or her portfolio based on the available data at each time. At each time t, the
investor computes the sample moments by the return data from t−M to t− 1, and he or she invests in the
portfolio aforementioned and based on the sample moments, so that he or she obtains investment returns
depending on his or her portfolio. I compare performances of the portfolios by these returns.

Table 1: Monthly Sharpe Ratios. Estimation window is M = 60. The investment horizon is T = 420

from Jan 1981 to Dec 2015. γ is 5.

Portfolio ME/BM 6 ME/BM 25 Industry 10 Industry 49 MSCI 4
Ambiguity-averse optimal portfolios

MP 0.202 0.216 0.187 0.194 0.118
MP-TV 0.264 0.298 0.160 0.203 0.094

Standard mean-variance optimal portfolios
MV 0.237 0.192 0.050 0.110 0.075

GMV 0.267 0.276 0.202 -0.003 0.129
TP 0.233 0.198 0.049 -0.002 -0.049

EW 0.150 0.153 0.167 0.143 0.120

Table 1 shows out-of-sample Sharpe ratios. The results shown in Table 1 are summarized in the follow-
ing three points. First, the out-of-sample Sharpe ratios of MP-TV dominate those of MV and TP in all the
data sets. The Sharpe ratio of MP-TV in Industry 10 is 0.160 while one of MV is 0.050, and the difference
is significant at 0.1% level (the p-value is 0.999). However, the differences between MP-TV and MV in the
other data sets are not significant at 5% level. As well as MP-TV, MP has a better performance.

Next, GMV also dominates MV excluding the data set Industry 49. The Sharpe ratio of GMV in
Industry 10 is 0.160, and the difference is significant at 0.5% level (the p-value is 0.997). However, the
Sharpe ratio of MV in Industry 49 is statistically significantly higher than that of GMV at 5% level (the
p-value is 0.049). The differences between GMV and MV in the other data sets are not significant at 10%
level. Furthermore, GMV also dominates TP except for Industry 49.

Comparing MP-TV with GMV, MP-TV has a tendency to dominate GMV when the number of the
assets is large. In the ME/BM data sets, GMV defeats MP-TV in ME/BM 6 while MP-TV dominates GMV
in ME/BM 25. Similarly, GMV has a larger out-of-sample Sharpe ratio in Industry 10 than MP-TV, but this
relation becomes reversed in Industry 49: the out-of-sample Sharpe ratio of GMV is -0.003 while that of
MP-TV is 0.203. In MSCI 4, GMV has a better performance than MP-TV. The differences between MP-TV
and GMV are not significant at 10% level excluding Industry 49 (its p-value is 0.999). MP also dominates
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GMV in Industry 49, but GMV has a better performance in the other data sets than MP. Considering how to
design MP and MP-TV, MP and MP-TV take account of ambiguity for the asset returns, and the ambiguity
becomes large when the number of the assets is large. Therefore, it is natural that MP and MP-TV have a
better performance than GMV when the number of the asset is large, in other words, ambiguity is large.

Table 2: Turnover. The definition of the turnover is given in the equation (4). Estimation window is
M = 60. The investment horizon is T = 420 from Jan 1981 to Dec 2015. γ is 5.

Portfolio ME/BM 6 ME/BM 25 Industry 10 Industry 49 MSCI 4
Ambiguity-averse optimal portfolios

MP 0.076 0.093 0.110 0.175 0.063
MP-TV 0.414 0.405 0.385 0.374 0.217

Standard mean-variance optimal portfolios
MV 3.803 71.544 3.008 1099.435 0.491

GMV 0.417 1.900 0.310 4.218 0.087
TP 2.369 11.288 39.447 191.942 14.573

EW 0.015 0.017 0.023 0.032 0.025

MP and MP-TV also have an advantage in practice: their transaction is relatively small. Define the
turnover of the portfolio w such that

Turnover =
1

T −M

T∑
t=M+1

N∑
j=1

|w+
j,t − wj,t|, (4)

where wj,t is the portfolio w’s weight of the asset j at time t, and w+
j,t is the ex post portfolio w’s weight

of the asset j at time t. If the turnover of some portfolio is large, it is difficult to implement this portfolio
because the transaction due to the turnover erodes the returns. Table 2 shows out-of-sample turnovers. For
any data set, EW’s turnover is the smallest. In Industry 49 data set, the turnover of EW is 0.032, and ones in
the other data sets are less than 0.1. Since EW does not vary depending on estimation, this result is natural.
On the other hand, MV and TP have a large transaction in all the datasets. In relatively larger data sets,
ME/BM 25 and Industry 49, the turnovers of MV and TP are more than 10. The turnovers of GMV are also
large in the large data sets, which are over 1, but those in small data sets are relatively small. However, the
turnovers of MP and MP-TV are small relative to MV, GMV, and TP. These turnovers in every dataset are
smaller than 0.5. By the definition, MP and MP-TV can be regard as a nonlinear combination between MV
and EW, so it is plausible that their turnovers become small.

Table 3 shows the out-of-sample Sharpe ratios adjusted to transaction. I set the transaction cost as 50
basis points, so, for example, the investor needs to pay 5 dollars at time twhen the transaction

∑N
j=1 |w

+
j,t−

wj,t| is 1000 dollars. Taking account of transaction, MV and TP become largely worse. MV has negative
Sharpe ratios in ME/BM 25, Industry 10 and Industry 49 while these Sharpe ratios are positive without
transaction. As seen in Table 2, MV and TP have large turnovers, and their negative effects to portfolio
performances are also large. Furthermore, the negative impacts of the turnovers are also large for the out-
of-sample Sharpe ratio of GMV in ME/BM 25 and Industry 49. In ME/BM 6, GMV has a larger Sharpe
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Table 3: Monthly Sharpe Ratios with Transactions. The transaction cost is 50 basis points. Es-
timation window is M = 60. The investment horizon is T = 420 from Jan 1981 to Dec 2015. γ is
5.

Portfolio ME/BM 6 ME/BM 25 Industry 10 Industry 49 MSCI 4
Ambiguity-averse optimal portfolios

MP 0.195 0.207 0.174 0.176 0.112
MP-TV 0.217 0.247 0.117 0.160 0.069

Standard mean-variance optimal portfolios
MV 0.056 -0.245 -0.069 -0.186 0.034

GMV 0.215 0.052 0.156 -0.328 0.121
TP 0.064 -0.114 -0.049 0.044 -0.078

EW 0.150 0.153 0.166 0.141 0.120

ratio than MP in the absence of transaction, but the Sharpe ratio of MP with transaction becomes larger than
that of GMV. On the other hand, the negative impacts of the turnovers to MP and MP-TV are limited even if
the number of the assets is large. In ME/BM 25 and Industry 49, MP and MP-TV have a better performance
than GMV, and the differences of their Sharpe ratios from the GMV’s Sharpe ratio are significant at 0.1%
level (the p-values are more than 0.999). Therefore, the multiple priors portfolios, MP and MP-TV are
robust to transaction, and that is an advantage when implementing these portfolios in reality.
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