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Abstract

A continuous-time agency model is explored where the agent has loss-aversion

preferences. We show that the optimal contract includes a flat part insensitive

to the agent’s continuation payoff, whereas the flat part is preceded and fol-

lowed by a range of option-type payoffs. Furthermore, the introduction of loss

aversion induces the investors to reward the agent earlier, and to use a higher-

powered incentive scheme. Implementing the optimal contract by standard

securities, we provide possible explanations for the evolution of CEO compen-

sation with the low level of stability of CEOs’ equity ownership in the United

States, and for the corporate dividend-smoothing policy.
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1. Introduction

The evolution of CEO compensation in the United States since World War

II can be divided broadly into three distinct periods (see Frydman and Jenter

(2010) and Frydman and Saks (2010)). Prior to the 1970s, CEO compensation

was characterized by low levels of pay, little dispersion across top managers,

and moderate pay—performance sensitivities. From the mid-1970s to the end

of the 1990s, CEO compensation changed considerably: compensation levels

trended upward dramatically, differences in compensation across managers and

firms increased, and, in particular, stock options grew substantially to become

the single largest component of CEO compensation in the 1990s. The sen-

sitivity of CEO wealth to firm performance also surged in the 1990s, mainly

because of rapidly growing option portfolios. During the 2000s, CEO com-

pensation shifted again: average CEO compensation declined, and restricted

stock grants replaced stock options as the most popular form of stock com-

pensation. By contrast, most CEOs’ fractional equity ownership remained low

throughout these three periods, although it has increased gradually. Dividend

smoothing also is one of the most widely documented phenomena in the cor-

porate financing literature, because firms’ primary concern is the stability of

dividends (see Leary and Michaely (2011)).

To provide possible explanations for these stylized facts, we develop a continuous-

time agency model in which the agent has loss-aversion preferences, as in-

troduced by prospect theory (Kahneman and Tversky (1979)). Our model

represents a significant departure from the previous continuous-time agency

literature in that the agent derives gain—loss utility from comparing his actual

consumption with a reference point, instead of his absolute level of consump-

tion. We first address the following theoretical questions. (i) Is there a range of

the agent’s continuation payoff–the total payoff that investors (the principal)

expect(s) the agent to derive in the future after a given moment in time–in

which he is rewarded with fixed cash compensation? (ii) Is there a range of the

agent’s continuation payoff in which his fixed cash compensation is reduced
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according to performance or where all excess cash flows are paid immediately

as the exercise of option grants? In addition, is there any difference in the sen-

sitivity of the agent’s compensation to performance in these nonflat ranges?

(iii) Does the introduction of loss aversion induce investors to reward the agent

earlier? (iv) How do the key parameters such as the degree of loss aversion or

the magnitude of the agency problem affect the incentive scheme? In particu-

lar, does an increase in the degree of the agent’s loss aversion induce investors

to use a lower- or higher-powered incentive scheme? (v) How can the result-

ing optimal contract be implemented with a capital structure (a line of credit,

long-term debt, and equity) in which the agent controls the payout policy. Ex-

ploiting the results of these theoretical questions, we can provide explanations

for the stylized facts mentioned at the beginning: (i) the evolution of CEO

compensation in the United States since World War II–in particular, the rise

in CEO compensation and the use of equity-linked pay since the 1970s–as

well as the low level of stability of CEOs’ fractional equity ownership in the

same period; and (ii) the corporate dividend-smoothing policy.

Our model generalizes the continuous-time agency model of DeMarzo and

Sannikov (2006) by incorporating loss aversion. We consider a continuous-time

setting in which a risk-neutral agent with limited liability and loss aversion

needs to raise external capital from risk-neutral investors in order to start up

a project and cover future operating losses. However, the agent can divert

the cash flows from the project for personal consumption by taking hidden

actions.1 The agent also derives gain—loss utility from comparing his actual

consumption level with his reference consumption level. The agent and in-

vestors then sign a contract, which obliges the agent to report the cash flows

from the project to investors and specifies transfers between the agent and in-

vestors and the date at which investors can terminate the project. To provide

the agent with appropriate incentives, investors control the transfers to the

1As shown in DeMarzo and Sannikov (2006), the characterization of the optimal contract

in our model is unchanged even though the agent makes a hidden effort choice as in the

standard principal—agent model.
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agent, and may also force the early termination of the project, conditional on

the agent’s continuation payoff. Under the optimal contract, the agent finds it

optimal to report the cash flows truthfully. The contract is terminated when

the agent’s continuation payoff equals his reservation payoff.

In the original model of DeMarzo and Sannikov (2006), the risk-neutral

agent is more impatient than the investors. Because exchanging relative con-

sumption timings between the agent and investors improves efficiency, the op-

timal contract induces investors to pay cash to the agent as early as possible.

However, paying cash to the agent earlier reduces his continuation payoff, and

will make future inefficient liquidation more likely. Thus, the optimal contract

requires investors to set an optimal cash payment threshold (reflecting bar-

rier) of the agent’s continuation payoff below which the agent is not paid, but

above which all excessive cash flows are immediately paid to the agent. The

observed compensation contract, however, is at odds with these predictions

because it is a combination of both a fixed part (high base salaries) where

payment does not vary with performance and a flexible part (option holdings)

where payment varies with performance once a certain level of performance is

achieved.

To provide possible explanations for the observed practice, we incorporate

loss aversion into the agent’s preferences. The key feature is that the agent’s

utility depends partly upon the deviation of consumption from a reference

level: the agent compares his actual consumption level with the reference con-

sumption level. Then, there is a kink in the utility function at the reference

consumption with the utility function steeper immediately below this level.

If the agent attains only a low level of consumption, he compares this with

the higher consumption he could have attained, and experiences the sensation

of a loss from this comparison. The anticipation of these losses reduces the

agent’s continuation payoff. Thus, loss aversion–the agent’s higher sensitivity

to losses than to gains around the reference point–induces the agent to be

more risk averse near the reference point; this may therefore generate partial

incentives for the agent to avoid staying in the loss space where his actual con-
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sumption level is not larger than his reference consumption level. However, the

kink in the utility function causes our dynamic continuous-time optimization

problem to be extremely difficult. Therefore, we need to overcome the prob-

lem of the kinked utility function in the dynamic system in order to discuss

whether loss aversion creates a fixed segment where positive payment does

not vary with performance, and a flexible segment where payment varies with

performance once a certain level of performance is achieved.

The main results are as follows. Our first main result is that the optimal

contract includes a range of the agent’s continuation payoff where he is re-

warded with fixed cash compensation. At each end of the flat range, there is

a range consisting of the lower levels of the agent’s continuation payoff where

the fixed cash compensation is reduced according to his continuation payoff,

and a range consisting of the higher levels of his continuation payoff where all

excess cash flows are paid immediately as the exercise of option grants (for

example, the exercise of stock option awards with performance-based vesting

provisions). The sensitivity of the agent’s compensation to his continuation

payoff is lower in the former nonflat range than in the latter one. Furthermore,

both the beginning of the former nonflat range and the beginning of the latter

nonflat range minus the reference consumption level are absorbing states along

the optimal path.

Intuitively, note that the agent’s impatience implies a strictly positive mar-

ginal benefit of investors paying cash to the agent earlier. However, as the

earlier payment to the agent may cause future inefficient liquidation, the op-

timal contract requires investors to set a cash payment threshold at which

investors start paying the cash to the agent. Now, the incorporation of loss

aversion results in the agent’s higher sensitivity to losses than to gains. Be-

cause entering the loss space is an expensive way to compensate the agent,

investors have an incentive to increase payments to the agent in the loss space

in order to reduce the scope for incurring a loss or to reduce disutility from loss

aversion in the loss space. Thus, the agent’s cash compensation varies with

his continuation payoff once his continuation payoff exceeds the cash payment
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threshold in the loss space. In fact, loss aversion does not operate in the gain

space. Hence, if the agent’s compensation exceeds the reference level of in-

come when his continuation payoff increases, investors’ incentives to pay any

additional cash are mitigated. As a result, if the agent’s continuation payoff

is large enough, investors make payments exactly equal to the reference level

of income so that they reduce disutility from loss aversion as much as pos-

sible but avoid leaving the agent in the gain space. However, if the agent’s

continuation payoff is even larger, he enters a cash payment threshold in the

gain space, where all excess cash flows are paid immediately as the exercise

of option grants. Because the agent stays in the gain space and feels no loss

aversion, the benefit to the agent of receiving cash is greater. Hence, the sen-

sitivity of the agent’s compensation to his continuation payoff is higher in this

range than in the other ranges.

The second main result is that the introduction of loss aversion induces

investors to reward the agent earlier. Intuitively, the agent’s impatience implies

a strictly positive marginal benefit of investors paying cash to the agent earlier,

while the possibility of future inefficient liquidation creates a marginal cost of

investors paying cash to the agent earlier. In the absence of loss aversion, the

optimal contract requires investors to set the timing of the cash payments so

that the marginal benefit equals the marginal cost. However, the introduction

of loss aversion creates the additional benefit of investors paying cash to the

agent earlier because a positive payment to the agent reduces disutility from

loss aversion in the loss space. Hence, this additional effect induces investors

to pay cash earlier in the presence of loss aversion than in its absence.

Our third main result shows that an increase in the agent’s degree of loss

aversion induces investors to use a higher-powered incentive scheme. Intu-

itively, underreporting income and diverting the cash flows from the project

reduce disutility from loss aversion in the loss space at a rate that is propor-

tional to the degree of loss aversion. Thus, with a higher degree of loss aversion,

investors need to provide a greater incentive to the agent. By contrast, the

static moral hazard model of Herweg, Müller, andWeinschenk (2010) indicates
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that an increase in the agent’s degree of loss aversion may allow the principal

to use weaker incentives. The difference is that in their model, a higher degree

of loss aversion may be associated with a stronger incentive for the agent to

choose a high effort in order to reduce the scope for incurring a loss by af-

fecting the probability distribution of the outcome. This possibility allows the

principal to use weaker incentives. However, our result can also be extended

to the hidden action model if the hidden action directly affects the firm’s cash

flow level rather than the probability distribution of the firm’s cash flow.

The fourth main result relates to capital structure implementation. As in

DeMarzo and Sannikov (2006), the optimal contract is implemented by a com-

bination of equity, long-term debt, and a line of credit. The credit line balance

traces the agent’s continuation payoff. The agent is compensated by holding

a fraction of the firm’s equity and receiving dividends, whereas the remaining

equity, debt, and line of credit are held by outside investors. However, the

capital structure implementation of our model is different from that of De-

Marzo and Sannikov (2006) in the following respects: (i) the percentage of

the firm’s equity held by the agent is increasing in the agent’s degree of loss

aversion; (ii) dividends are paid before the line of credit has been paid off;

(iii) dividend payments are positive but insensitive to the firm’s performance

if the credit line balance is sufficiently low; (iv) a large line of credit delays

or reduces dividend payments; and (v) the total debt capacity of the firm is

sensitive to the volatility of the project returns and the liquidation value of

the project.

As mentioned at the beginning, our theoretical findings yield empirical im-

plications for the evolution of CEO compensation as well as the low level of

stability of CEOs’ fractional equity ownership in the United States since World

War II, and for the corporate dividend-smoothing policy. First, many theories

have been developed to explain the rise in CEO compensation and the use of

stock-based compensation since the 1970s. For example, the managerial power

(rent extraction) theory suggests that the high level of CEO compensation is

the result of executives’ ability to set their own pay and extract rents from the
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firms they manage (see Bebchuk and Fried (2003, 2004)). The competitive pay

theory also indicates that the high level of CEO compensation is viewed as the

efficient outcome of a managerial labor market where firms compete optimally

for managerial effort or talent (see Frydman and Jenter (2010) for a review

of the literature). However, none of these theories provides a compelling ex-

planation for the apparent change in CEO compensation that occurred during

the 1970s, or for the rise in CEO compensation and the use of equity-linked

pay since the 1970s together with the low level of stability of CEOs’ fractional

equity ownership in the same periods. Furthermore, neither theory explains

the explosive growth of options in the 1990s and their recent decline in favor

of restricted stock. By contrast, our model sheds new light on these problems

from a dynamic perspective using the loss-aversion framework. In particu-

lar, along the evolution of the agent’s continuation payoff, our model derives

not only the optimality of fixed cash compensation but also the optimality of

option-like compensation, together with the low level stability of the agent’s

fractional equity ownership. As the agent’s continuation payoff can be viewed

as equity value to outside investors, the evolution of equity value can provide

some explanations for the stylized facts of the evolution of CEO compensa-

tion and the low level of stability of CEOs’ fractional equity ownership in the

United States since World War II. Second, although several recent theoretical

studies have suggested a renewed interest in explaining dividend smoothing,

there is little agreement as to why firms smooth their dividends or what de-

termines a firm’s propensity to smooth (see Leary and Michaely (2011) for

a survey of the literature). Our theoretical results give some explanation of

dividend smoothing on the basis of loss aversion under the continuous-time

agency framework.

1.1. Related literature.–

The work in this paper is related to the growing literature on continuous-

time principal—agent models using martingale techniques. DeMarzo and San-

nikov (2006), Philippon and Sannikov (2007), Hoffmann and Pfeil (2010),
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and Piskorski and Tchistyi (2010) analyze a cash-diversion model with a risk-

neutral agent, whereas Biais, Mariotti, Rochet, and Villeneuve (2010) study

a large risk-prevention model with a risk-neutral agent. He (2009) extends

the continuous-time agency model by allowing a risk-neutral manager to con-

trol privately the drift of the geometric Brownian motion firm size. Sannikov

(2008), Jovanovic and Prat (2010), and He (2011) examine an agency prob-

lem with a risk-averse agent in a firm whose cash flows are determined by the

agent’s unobservable effort.

The main difference between our model and the aforementioned continuous-

time agency models is that our model deals with an agent with loss-aversion

preferences. As a result, even under the cash-diversion model à la DeMarzo

and Sannikov (2006), we show that the optimal contract includes a range

of the agent’s continuation payoff in which he is rewarded with fixed cash

compensation. In addition, our model provides a theoretical underpinning for

the use of option-like incentive schemes in CEO compensation. These features

enable us to give explanations not only for the evolution of CEO compensation

in the United States since World War II as well as the low level of stability

of CEOs’ fractional equity ownership in the same period, but also for the

corporate dividend-smoothing policy.

Our work is also related to the static principal—agent literature that in-

corporates loss aversion as introduced by the prospect theory of Kahneman

and Tversky (1979). On the basis of experimental evidence, Kahneman and

Tversky propose a value function defined according to the gains or losses rel-

ative to a reference point, instead of the absolute level of consumption or

wealth.2 Based on several notions of loss aversion, de Meza and Webb (2007)

show that there will be intervals over which pay is insensitive to performance;

they also rationalize the use of option-like compensation. Incorporating the

expectation-based loss aversion of Kőszegi and Rabin (2007), Herweg, Müller,

and Weinschenk (2010) indicate that the optimal contract is a binary pay-

2The value function is defined according to deviations from the reference point, is gen-

erally concave for gains and convex for losses, and is steeper for losses than for gains.
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ment scheme (lump-sum bonus contract). Calibrating a stylized principal—

agent model, Dittmann, Maug, and Spalt (2010) suggest that the loss-aversion

model generates convex compensation contracts and dominates an equivalent

risk-aversion model in explaining the observed compensation contracts of 595

CEOs in the United States.

The commonality of the loss aversion concepts in these static models is that

there is typically a range in which a positive payment does not vary with

performance. Even though our model deals with a dynamic, continuous-time

agency setting, we also succeed in deriving an optimal contract that includes

a range of the agent’s continuation payoff in which he is rewarded with fixed

cash compensation. De Meza and Webb (2007) and Dittmann, Maug, and

Spalt (2010) derive the optimality of option-type contracts by assuming the

agent’s risk aversion or risk tolerance. However, we show that even if the agent

is risk neutral, option-type contracts are optimal under the interaction of the

agent’s loss aversion with the dynamic factors related to the agent’s impatience

and the possibility of inefficient future liquidation. Furthermore, the static

principal—agent model with loss aversion does not explain the low level of

stability of CEOs’ fractional equity ownership nor the corporate dividend-

smoothing policy.

In the dynamic context, Kyle, Ou-Yang, and Xiong (2006) solve a liquidation

problem when a project owner has loss-aversion preferences. However, as they

use the real options approach in a single agent’s maximization model, their

model cannot deal with the principal—agent problem; as a result, their model

cannot consider how the optimal compensation contract should be designed.

The paper is organized as follows. Section 2 describes the basic model.

Section 3 derives an optimal contract. Section 4 discusses the implementation

of the optimal contract. Section 5 outlines the empirical implications of our

results. The final section contains the conclusions. The proofs for all the

lemmas and propositions are summarized in the Appendix.
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2. The Model

We present a continuous-time principal—agent model in which risk-neutral

investors of an infinitely lived firm hire a risk-neutral agent to operate the

firm. The firm produces the following cash flows:

dYt = μdt+ σdZt, (1)

where μ is the drift of the cash flows, σ is the volatility of the cash flows, and

Z = {Zt,Ft; 0 ≤ t < ∞} is a standard Brownian motion on the complete
probability space (Ω,F , Q).
We assume that μ and σ are observed publicly. However, we assume that

investors do not observe the cash flows Y ≡ {Yt; 0≤ t <∞}, whereas the agent
does. Thus, the agent has the opportunity to misrepresent his income. The

agent reports cash flows bY ≡ {bYt; 0≤ t <∞} to investors, but can underreport
the cash flows by diverting them or overreport the cash flows by reinvesting

his own money back into the project. Based on the agent’s reports, a contract,

(τ , I), specifies a termination time of the relationship, τ , and compensation

for the agent, I ≡ {It; 0 ≤ t < ∞}.3
If the agent receives a fraction λ ∈ (0, 1] of the cash flows he diverts, his

total flow of income at time t equals

h
dYt − dbYtiλ+dIt, where

h
dYt − dbYtiλ ≡ λ

³
dYt − dbYt´+−³dYt − dbYt´− ,

where
³
dYt − dbYt´+ represents diversion and ³dYt − dbYt´− indicates overre-

porting.

The agent is risk neutral, but a negative wage is ruled out by limited liability.

The agent also discounts his consumption at rate γ, and keeps a private savings

3τ is a bY -measurable stopping time, and I is a bY -measurable continuous process.
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account. The agent’s balance St evolves at interest rate ρ < γ according to

dSt = ρStdt+
h
dYt − dbYtiλ + dIt − dCt, (2)

where dCt ≥ 0 is the agent’s consumption at time t. Because the agent must
maintain a nonnegative balance in his account, St is restricted such that St ≥
0.

The agent is assumed to have loss-aversion preferences à la de Meza and

Webb (2007), Herweg, Müller, and Weinschenk (2010), and Dittmann, Maug,

and Spalt (2010). Hence, the agent’s total expected payoff from the contract

at date 0 is represented by

W0 = E
©R τ

0
e−γs [dCs + θ(dCs, a)(dCs − ads)] + e−γτR

ª
, (3)

where a > 0 is the reference level and

θ(dCs, a) =

⎧⎨⎩ θ, if dCs ≤ ads,
0, if dCs > ads.

(4)

Note that the agent receives R ≥ 0 from an outside option when the contract
is terminated.

The agent’s total expected payoff has three components: consumption util-

ity,
R τ

0
e−γsdCs; loss-aversion disutility,

R τ

0
e−γsθ(dCs, a)(dCs − ads); and a

termination payoff, e−γτR. The loss-aversion component captures the feature

that the psychological pain of falling below the reference level is greater than

any pleasure from surpassing it by an equal amount (see prospect theory in-

troduced by Kahneman and Tversky (1979)). Therefore, loss aversion applies

and θ(dCs, a) = θ in the loss space (dCs ≤ ads), whereas it does not operate
in the gain space (dCs > ads). Formally, this introduces a kink in the agent’s

value function at a. For the termination payoff, R may include the deduction

amount in the loss space if the outside option cannot attain the reference-level

consumption.
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Investors can commit to an employment contract (τ , I). In response to

(τ , I), the agent chooses a feasible strategy (C, bY ) to maximize his total ex-
pected payoff, where C ≡ {Ct; 0 ≤ t < ∞}.4 The agent’s strategy (C, bY ) is
incentive compatible if it maximizes his total expected payoff (3) given (τ , I).

Conversely, a contract (τ , I) is incentive compatible if it induces the agent’s

incentive-compatible strategy.

We need not explicitly consider the agent’s option to quit or to receive the

outside option R. The reason is that the agent can always underreport his

income until termination at a rate that yields the agent at least R.

Investors are assumed to be risk and loss neutral, and to discount their cash

flows at the market interest rate r that satisfies ρ ≤ r < γ. Once the contract

is terminated, investors receive liquidation payoff L ≥ 0. We assume that L
< μ

r
so that liquidation is inefficient. Because investors contribute external

capital K, which is required for the project to be started, the total expected

payoff of investors at date 0 is then

E
hR τ

0
e−rs(dbYs − dIs) + e−rτLi−K. (5)

Now, the optimal contracting problem is to find an incentive-compatible

contract (τ , I) that maximizes the total expected payoff of investors subject

to delivering the agent an initial required payoff W0.

3. Optimal Contracting

In this section, we consider recursively the dynamic moral hazard problem

and derive the optimal contract, employing the continuous-time techniques

developed by DeMarzo and Sannikov (2006). We first show the following

lemma, which ensures that it is sufficient to find an optimal contract within a

smaller class of contracts.

4A feasible strategy is a pair of processes (C, bY ) adapted to Y so that (i) bY is continuous
and if λ < 1, Yt − bYt has bounded variation, (ii) Ct is nondecreasing (dCt ≥ 0, that is,

nonnegative consumption), and (iii) the saving process of (2) stays nonnegative.
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Lemma 1: There exists an optimal contract where the agent chooses to report

cash flows truthfully, and maintains zero savings.

Thus, without loss of generality, we focus on an optimal contract in which

truth telling and zero savings are incentive compatible. The intuition is similar

to that given by DeMarzo and Sannikov (2006).

3.1. Optimal Contract without Savings.–

3.1.1. The agent’s continuation payoff and incentive compatibility

If the agent could not save secretly, he would not be able to overreport cash

flows and he would consume all his income, as shown in DeMarzo and Sannikov

(2006). In this case, (2) would be rearranged so that

dCt = λ
h
dYt − dbYti+ dIt, (6)

where dYt − dbYt ≥ 0. However, we assume that investors do not observe the
agent’s consumption. Hence, dYt − dbYt is not observable to investors. In
Section 3.1, assuming that the agent can neither save secretly nor steal at an

unbounded rate,5 we find an optimal contract in which truth telling and zero

savings are incentive compatible. In Section 3.2, we show that the optimal

contract derived in Section 3.1 remains incentive compatible even though we

allow the agent to save secretly or to steal at an unbounded rate.

It follows from (3) and (6) that for any contract (τ , I), we define the agent’s

continuation payoff at time t after a history of reports (bYs, 0 ≤ s ≤ t) if he
tells the truth (dYt = dbYt) after time t:

Wt(bY ) = Et ©R τ

t
e−γ(s−t) [dIs + θ(dIs, a)(dIs − ads)] + e−γ(τ−t)R

ª
. (7)

Wt(bY ) is the agent’s continuation value obtained under (τ , I) if he tells the
truth after time t and works from t onward until the time the contract is

5Formally, Yt − bYt is Lipschitz continuous.
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terminated.

The following lemma gives the evolution of Wt in terms of reports bYt.
Lemma 2: For any contract (τ , I), there is a sensitivity process of the agent’s

continuation payoff toward his report, {βt : 0 ≤ t ≤ τ}, such that for every
t ∈ [0, τ ], his continuation value Wt evolves according to

dWt = γWtdt− dIt+βt(d
bYt−μdt)− θ(dCt, a)(dCt− adt), t ∈ [0, τ ]. (8)

The truth-telling contract is incentive compatible if and only if

βt ≥ λ[1 + θ(dCt, a)], ∀dCt ≥ 0 and t ∈ [0, τ ]. (9)

Equation (8) describes how the agent’s continuation value must evolve over

time. The first three terms on the right-hand side of (8) are the same as in

DeMarzo and Sannikov (2006). The first and second terms represent a drift

component that corresponds to promise keeping. These components imply

that Wt has to grow at the agent’s discount rate γ, less his compensation

dIt. The third term is a diffusion component that reflects the agent’s reward

from reporting his income. The diffusion component is related to the agent’s

incentives for reporting truthfully. The final term on the right-hand side of

(8) is novel and captures the effect of loss aversion. It shows that the agent’s

continuation payoff must be compensated by θ(adt − dCt) when loss aversion
applies in the loss space (θ(dCs, a) = θ if dCs ≤ ads); by contrast, the agent’s
continuation payoff need not be adjusted when loss aversion does not operate

in the gain space (θ(dCs, a) = 0 if dCs > ads).

To make it incentive compatible for the agent to report income truthfully,

the contract must make the benefits from underreporting income less than

the benefits from reporting all income. For any additional unit of income, if

the agent chooses to underreport income, it follows from (6) that he gains a

private benefit from diversion, λ. He also reduces disutility from loss aversion,

λθ(dCt, a), by consuming the diverted income. By contrast, if the agent reports
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all income, he gains βt because his continuation utility is then increased by βt.

These discussions imply that the agent will report income truthfully as long

as βt ≥ λ[1 + θ(dCt, a)] for any dCt ≥ 0.

3.1.2. Investors’ value function Let b(W ) be the investors’ value func-

tion, which is the highest expected payoff to investors obtained from an incentive-

compatible contract that provides the agent with a payoff equal to W . To

simplify our discussion, we assume that b(W ) is concave. In Proposition 2, we

verify that b(W ) is concave.

We first discuss a cash payment threshold where investors start paying cash

to the agent. In the optimal contract, dCs = dIs. It follows from (4) and (8)

that the lump-sum transfer of dI decreases W by dI(1 + θ) if dI ≤ a, while
it reduces W by dI if dI > a. Because investors can always pay a lump-sum

transfer of dI units of income and move to the contract with W − dI(1 + θ)

if dI ≤ a (or W − dI if dI > a), the optimality then implies that

b(W ) ≥
⎧⎨⎩ b(W − dI(1 + θ))− dI, if dI ≤ a,
b(W − dI)− dI, if dI > a.

The above inequality is rewritten so that

b0(W ) ≥
⎧⎨⎩ − 1

1+θ
, if dI ≤ a,

−1, if dI > a.
(10)

Inequality (10) means that the marginal cost to investors of delivering the

agent his continuation payoff, −b0(W ), can never exceed the cost of a lump-
sum transfer in terms of investors’ payoff for all W . Define fW (or W 1) as the

lowest value such that b0(W ) = − 1
1+θ

(or b0(W ) = −1) if dI ≤ a (or dI > a).
Then, the optimal contract does not pay out cash dI > 0 until Wt exceeds

the reflecting barrier fW (or W 1) if dI ≤ a (or dI > a). Indeed, if b0(W ) >

− 1
1+θ

(or b0(W ) > −1) when dI ≤ a (or dI > a), then promising one unit of
continuation payoff to the agent costs the firm less than paying one unit of
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cash. As a result, investors hold the cash and promise to pay later.

The optimal payment policy for investors is represented in Proposition 1.

Proposition 1: (i) Suppose that fW + θa < W 1. Then, it is optimal for

investors to pay the agent according to

dI =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, if W ≤fW,
W−W
1+θ

, if fW < W ≤ fW + (1 + θ)a,

a · dt, if fW + (1 + θ)a < W ≤W 1 + a,

W −W 1, if W 1 + a < W.

(ii) Suppose that W 1 ≤ fW + θa. Then, it is optimal for investors to pay the

agent according to

dI =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if W ≤fW,

W−W
1+θ

, if fW < W ≤W 1 + a,

W −W 1, if W 1 + a < W.

Proposition 1(i) shows that if fW + θa < W 1, the optimal contract consists

of four segments in terms of the agent’s continuation payoff W : for a range

of sufficiently small W , no compensation is paid; thereafter compensation

increases withW up to the reference point a; then there is a range of relatively

high W in which compensation equals the reference point; and lastly there is

a range of sufficiently high W in which compensation is increasing with W

more rapidly. Proposition 1(ii) indicates that if W 1 ≤ fW + θa, the optimal

contract consists of three segments in terms of W . The difference is that in

this case, there is no flat range where compensation is paid but is insensitive

to W . However, in both cases, fW (or W 1 + a) is a reflecting barrier where

investors will pay the agent W−W
1+θ

(or W − W 1) to bring back W to fW (or

W 1) once W ∈ (fW, fW + (1 + θ)a] in Proposition 1(i) and W ∈ (fW, W 1 +

a] in Proposition 1(ii) (or once W ∈ (W 1 + a, ∞)). In addition, irrespective
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of fW + θa < W 1 or W 1 ≤ fW + θa, the sensitivity of dI to W is higher in

the higher W range where dI increases with W than in the lower range. The

intuition for the result of Proposition 1 is given after we derive Proposition 2.

In the rest of the analysis, we focus on the case offW + θa < W 1. Note thatfW < W 1 because we will prove that b(W ), consisting of b−(W ) and b+(W )

defined by (14) and (15) below, is concave for allW ≤W 1 + a (see Proposition

2), and that b0−(fW ) > b0+(W 1) (see footnote 6). Thus, the inequality of fW +

θa < W 1 always holds if θa is not very high. Then, we can assume without

loss of generality that there will be an interval over which compensation is

paid but is insensitive to W .

The payment policy given by Proposition 1 and the option to terminate

keep the agent’s continuation payoff between R andW 1 + a. Hence, it follows

from (4), (8), and Proposition 1 that if W ∈ [R, W 1 + a] and if the agent is

telling the truth (bYt = Yt), the agent’s continuation value evolves according to⎧⎪⎪⎪⎨⎪⎪⎪⎩
dWt = γWt + βt(dYt − μdt) + θadt, if R ≤Wt ≤fW,
Wt =fW, if fW < Wt ≤ fW + (1 + θ)a,

dWt = γWt − adt+ βt(dYt − μdt), if fW + (1 + θ)a < Wt ≤W 1 + a.

(11)

We now need to characterize the investors’ value function. Using Ito’s

lemma, it follows from (11) and Proposition 1 that the sum of the investors’

expected cash flows and the expected change in the investors’ value function

are given by

E[dYt − dIt + db(Wt)] =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

μdt+ (γWt + θa) b0(Wt)dt+
1
2
β2tσ

2b00(Wt)dt,

if R ≤Wt ≤fW,
μdt− adt+ [γWt − a] b0(Wt)dt+

1
2
β2tσ

2b00(Wt)dt,

if fW + (1 + θ)a < Wt ≤W 1 + a.

(12)

Given Lemma 2, the agent’s best response strategy is to report the truth if

βt ≥ λ[1 + θ(dCt, a)] for all t ≤ τ . Thus, it follows from (4) that the agent’s
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best response strategy is to report the truth if βt(Yt) ≥ λ(1 + θ) for dCt ≤
adt, and if βt(Yt) ≥ λ for dCt > adt. As the agent can choose any dCt ≥ 0
arbitrarily, this implies that his best response strategy is to report the truth if

βt(Yt) ≥ λ(1 + θ). Because investors should earn an instantaneous total return

equal to the discount rate r at the optimum, (12) implies that the Hamilton—

Jacobi—Bellman equation for the investors’ value function b(W ) consists of the

following two parts:

rb−(W ) = max
β≥λ(1+θ)

μ+ (γW + θa) b0−(W ) +
1

2
β2σ2b00−(W ), if R ≤W ≤ fW,

(13a)

rb+(W ) = max
β≥λ(1+θ)

μ− a+ (γW − a) b0+(W ) +
1

2
β2σ2b00+(W ),

if fW + (1 + θ)a < W ≤W 1 + a. (13b)

Using the concavity of b−(W ) and b+(W ), as verified below, we must set β

= λ(1+ θ) in both cases. The investors’ value function b(W ) thus satisfies the

following second-order differential equations:

rb−(W ) = μ+ (γW + θa) b0−(W ) +
1

2
λ2(1 + θ)2σ2b00−(W ), if R ≤W ≤fW,

(14a)

rb+(W ) = μ− a+ (γW − a) b0+(W ) +
1

2
λ2(1 + θ)2σ2b00+(W ),

if fW + (1 + θ)a < W ≤W 1 + a, (14b)

with

b−(W ) = b−(fW )− W −fW
1 + θ

, if fW < W ≤fW + (1 + θ)a, (15a)

b+(W ) = b+(W
1 + a)− (W −W 1 − a), if W 1 + a < W. (15b)

Note that (15b) is derived from [b+(W
1) − b+(W 1 + a)] + (W − W 1 − a) +

b+(W ) = b+(W
1) for W ∈ (W 1 + a, ∞).

Termination delivers a boundary condition atW = R. In addition, investors
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are indifferent between paying dI = W−W
1+θ

and dI = a to the agent at W = fW
+ (1 + θ)a. This condition provides another boundary condition. The opti-

mality of the cash payment also yields four other boundary conditions. These

six boundary conditions yield a solution to equation (14) and the boundariesfW and W 1 + a. First, investors terminate the contract when the agent’s

continuation value becomes equal to his reservation level, b−(R) = L. Second,

paying dI = W−W
1+θ

to the agent brings about the same level of investors’ value

function as paying dI = a to the agent. Thus, b−(W ) and b+(W ) must be

connected smoothly. Given (15a), this implies that b−(fW +(1+θ)a) = b−(fW )
− a = b+(fW + (1 + θ)a). Third, for the optimality of the cash payment, we

need the smooth pasting conditions: the first derivatives must agree at the

boundaries fW and W 1 + a, b0−(fW ) = − 1
1+θ

and b0+(W
1 + a) = −1.6 We also

need to have the super contract conditions: the second derivatives must agree

at the boundaries fW and W 1 + a, b00−(fW ) = 0 and b00+(W 1+ a) = 0. It follows

from (14), b0−(fW ) = − 1
1+θ
, b0+(W

1 + a) = −1, b00−(fW ) = 0, and b00+(W 1 + a) =

0 that the super contract conditions are rewritten as

rb−(fW ) + γfW + θa

1 + θ
= μ, (16)

rb+(W
1 + a) + γ(W 1 + a) = μ. (17)

Figure 1 shows an example of the investors’ value function b(W ), which is

given by b−(W ), consisting of the curve AB and the line BC with the slope

− 1
1+θ
, and b+(W ) consisting of the curve CE and the attached line with slope

−1 for W > W 1 + a.

To conclude this subsection, we compare equation (14) with the correspond-

ing equation in DeMarzo and Sannikov (2006), which can be derived by setting

6It follows from Proposition 1 that the agent stays in the gain space as long as W 1+a <

W . Because the first derivative of the investors’ value function must be equal to −1 in the
gain space as long as payments to the agent are positive, we must have b0+(W

1 + a) = −1.
In addition, as the agent remains in the loss space at W = W 1 under the optimal contract,

we must also obtain −1 < b0+(W
1) < − 1

1+θ
. Although W 1 is defined as the lowest value

such that b0(W 1) = −1 if dI > a, note that W 1 belongs to the range of the loss space (dI

≤ a) under the optimal contract. Hence, b0+(W 1) cannot be equal to −1.
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a = θ = 0 in our model. Hence, their evolving equation of b(W ) is expressed

as

rb(W ) = μ+ γWb0(W ) +
1

2
λ2σ2b00(W ), if R ≤W ≤W 1, (18)

with b(R) = L, b0(W 1) = −1, and rb(W 1) + γW 1 = μ.7 Thus, the first

noticeable difference is that the dynamic system consists of two second-order

differential equations ((14a) and (14b)) and two payment thresholds (fW and

W 1 + a) in our model with loss aversion, whereas it consists of one second-

order differential equation and one payment threshold (W 1) in DeMarzo and

Sannikov (2006). The second key difference is found in the coefficients of

b0(W ) and b00(W ). In particular, the coefficient of b00(W ) is 1
2
λ2(1 + θ)2σ2 in

our model, whereas it is 1
2
λ2σ2 in DeMarzo and Sannikov (2006). Because

the coefficient of b00(W ) corresponds to the diffusion part of the state variable

and diffusion captures incentives, the presence of loss aversion requires greater

incentives along the optimal path.

3.1.3. The optimal contract The following proposition formalizes our

findings about the optimal contract that are derived in Section 3.1.2. The

verification argument is also given in the proof of this proposition.

Proposition 2: (i) Under the optimal contract, the investors’ continuation

payoff b(W ) consists of two parts b−(W ) for W ∈ [R, fW + (1 + θ)a] and

b+(W ) for W ∈ (fW +(1+ θ)a, ∞), and satisfies (14) and (15) with boundary
conditions b−(R) = L, b−(fW ) − a = b+(fW + (1 + θ)a), b0−(fW ) = − 1

1+θ
,

b0+(W
1 + a) = −1, (16) and (17). The function b(W ) is concave on W ∈ [R,

W 1 + a]; in particular, b−(W ) is strictly concave on W ∈ [R, fW ) and b+(W )
is strictly concave on W ∈ (fW + (1 + θ)a, W 1 + a).

(ii) The agent’s continuation payoff Wt evolves according to (11). When Wt

∈ [R, fW ], dIt = 0. When Wt ∈ (fW, fW + (1 + θ)a], a payment Wt−W
1+θ

is

made. When Wt ∈ (fW + (1 + θ)a, W 1 + a], dIt = a · dt. When W 1 + a

7Note that fW = W 1 = W 1 + a and b0−(fW ) = b0+(W
1 + a) = b0+(W

1) = −1 when a =
θ = 0.
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< Wt, a payment Wt − W 1 is made. When Wt = fW , payments dIt cause
Wt to reflect at fW as long as Wt ∈ (fW, fW + (1 + θ)a]. When Wt = W 1

+ a, payments dIt cause Wt to reflect at W
1 as long as Wt ∈ (W 1+ a, ∞).

Thus, fW and W 1 are absorbing states. When Wt falls to R, the contract is

terminated at time τ .

Corollary to Proposition 2: (i) The optimal payment schedule has two flat

segments: dIt = 0 for Wt ∈ [R, fW ] and dIt = a for Wt ∈ (fW + (1 + θ)a,

W 1 + a]. For Wt ∈ (fW, fW + (1 + θ)a] and Wt ∈ (W 1 + a, ∞), payment
is linearly increasing in the agent’s continuation value. These segments are

connected continuously.

(ii) In the continuous-time agency model with cash diversion, investors provide

stronger incentives to the agent along the optimal path in the presence of loss

aversion than in its absence. In addition, the introduction of loss aversion

induces investors to reward the agent earlier in the sense that investors start

paying the agent cash even though the investors and agent’s required expected

returns do not exceed the available expected cash flows.

Comparing the optimal contract given by Proposition 2 with that given by

DeMarzo and Sannikov (2006, Proposition 1), we can show how loss aversion

affects the features of the optimal contract. First, the introduction of loss

aversion induces investors to reward the agent earlier. In our model, investors

start paying the agent cash when Wt reaches fW before reaching W 1 + a,

which satisfies (17). In DeMarzo and Sannikov (2006), the principal postpones

payment to the agent byW 1,DS, which is determined by rb(W 1,DS) + γ ·W 1,DS

= μ, where b(W ) satisfies (18).8 This suggests that the introduction of loss

aversion induces investors to start paying the agent cash before the investors

and agent’s required expected returns exhaust the available expected cash

flows.9

8To distinguish between W 1 in DeMarzo and Sannikov (2006) and our W 1, we denote

the former by W 1,DS .
9Note that rb−(Wt) + γWt < μ for all Wt ∈ [R, fW + (1 + θ)a] and rb+(Wt)+γWt < μ

for all Wt ∈ (fW + (1 + θ)a, W 1 + a) because γ > r, b0−(W ) ≥ − 1
1+θ

for all W ∈ [R, fW +
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Intuitively, the agent’s impatience (γ > r) implies that the optimal contract

pays cash to the agent as early as possible. However, paying cash to the agent

earlier reduces the agent’s continuation payoff. Under limited liability of the

agent, investors are forced to terminate the contract when the agent’s continu-

ation payoff becomes R. Thus, paying cash to the agent earlier might increase

the likelihood of future inefficient contract termination. As a result, the opti-

mal contract requires investors to set the optimal cash payment boundary so

that the marginal benefit and the marginal cost of investors paying cash to

the agent are equal. In fact, the marginal benefit of investors paying cash to

the agent is greater in the presence of loss aversion than in its absence because

the positive payment to the agent reduces disutility from loss aversion in the

loss space by λθ. This is because the marginal benefit of investors paying cash

is raised discontinuously within the loss space when loss aversion (the higher

sensitivity to losses than to gains around the reference point) applies. Hence,

the effect of loss aversion induces investors to pay cash earlier.

Second, an increase in the agent’s degree of loss aversion forces investors

to provide the agent with a stronger incentive. More precisely, in our model,

the sensitivity of Wt with respect to the agent’s report, βt, equals the sum

of the magnitude of the agency problem, λ, and the degree of loss aversion,

θ, multiplied by λ (that is, βt = λ(1 + θ)). By contrast, in DeMarzo and

Sannikov (2006), the sensitivity just equals λ .

The intuition behind this result is that to avoid inefficiency resulting from

liquidation, investors can reduce the risk involved in lowering Wt; that is,

investors can reduce the probability that Wt reaches R, thus lowering the

probability of costly liquidation. To reduce the probability that Wt reaches

R, it is optimal for investors to make the sensitivity of Wt with respect to the

agent’s report, βt, as low as possible, provided that the level of sensitivity does

not violate his incentives to tell the truth. This implies that βt must be equal

(1 + θ)a], − 1
1+θ

> b0+(W ) > −1 for all W ∈ (fW + (1 + θ)a, W 1 + a), b−(fW + (1 + θ)a)

= b+(fW + (1 + θ)a), and (17) hold. Similarly, we can prove that rb(Wt) + γWt < μ for all

Wt ∈ [R, W 1,DS) in DeMarzo and Sannikov (2006).
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to λ(1 + θ). Indeed, underreporting income by one unit increases consumption

by λ and decreases the agent’s disutility from loss aversion in the loss space

by λθ, whereas it reduces the agent’s continuation payoff by βt. Hence, if βt

= λ(1 + θ), this sensitivity gives the agent just enough incentive to report a

true realization of income. However, in the absence of loss aversion (that is,

θ = 0), investors only need to set βt = λ.

This result is in contrast with the result in Herweg, Müller, and Weinschenk

(2010) that an increase in the agent’s degree of loss aversion may allow the

principal to use weaker incentives. In their static model, loss aversion may

be associated with a strong incentive for the agent to choose a high effort

because the high effort can affect the probability distribution of the outcome

and thereby reduce the scope for incurring a loss. By contrast, in our model,

loss aversion can increase the gains of cash diversion because cash diversion can

increase the agent’s consumption and thereby reduce the scope for incurring a

loss. Hence, to prevent the agent from diverting cash flows, investors need to

provide a stronger incentive for the agent under loss aversion. This problem

is discussed further in Section 3.1.4.

Third, loss aversion implies that, unlike in DeMarzo and Sannikov (2006),

the agent’s compensation may be insensitive to his continuation payoff over

some intervals even after investors start paying the agent cash. In the loss-

aversion literature, it is common that there is a range in which payment

does not vary with performance (see de Meza and Webb (2007) and Her-

weg, Müller, and Weinschenk (2010)). If the agent’s continuation payoff can

be interpreted as a kind of performance,10 our result also verifies the existence

of a performance-independent flat part in the range of intermediate perfor-

mance. Furthermore, in our model, for a smaller W , there exists a payment

threshold, fW , as an absorbing state below which investors postpone payment
to the agent and to which Wt returns when Wt ∈ (fW, fW + (1 + θ)a]. For a

higher W , there also exists another payment threshold, W 1 + a, below which

10Indeed, W can be viewed as a proxy for equity value to outside investors. See the

arguments in Section 5.
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the agent’s compensation is positive but constant for Wt ≥ fW + (1 + θ)a,

and another absorbing state, W 1, to which Wt returns when Wt ∈ (W 1 + a,

∞).11 The sensitivity of the agent’s compensation is higher when Wt ∈ (W 1

+ a, ∞) than when Wt ∈ (fW, fW + (1 + θ)a]. By contrast, in DeMarzo

and Sannikov (2006), there exists only one payment threshold as an absorbing

state below which investors postpone payment to the agent.

Intuitively, as the agent is more sensitive to losses than gains at the refer-

ence point, loss aversion causes a discontinuous drop in the agent’s marginal

payoff when consumption is below the reference point. This implies that if the

expected payoff to the agent needs to be maintained, expected payments in

the gain space must increase by proportionally more than the same amount

of reductions in the expected payments in the loss space; that is, entering the

loss space is an expensive way to compensate the agent. Hence, investors have

an incentive to increase payments to the agent in the loss space in order to

reduce the scope for the agent to incur a loss or to reduce the agent’s disu-

tility from loss aversion in the loss space. As a result, when Wt ∈ (fW, fW +

(1 + θ)a], investors make the cash payment Wt−W
1+θ

to the agent immediately

and maintain Wt at fW . However, for fW + (1 + θ)a < Wt, if investors make

the cash payment Wt−W
1+θ

immediately, the cash payment leaves the agent in

the gain space. Because loss aversion does not operate in the gain space and

investors want to avoid inefficient contract termination, investors have no in-

centive to make the cash payment Wt−W
1+θ

in the gain space as long as Wt is

not sufficiently large. Instead, investors make payments exactly equal to the

reference level of income, a, so that they reduce the agent’s disutility from

loss aversion as much as possible but avoid leaving the agent in the gain space

when Wt ∈ (fW + (1 + θ)a, W 1 + a]. When W 1 + a < Wt, investors start

making a cash payment to the agent of Wt − W 1 immediately and maintain

Wt at W
1 because they now have an incentive to do so even in the absence of

11In fact, it follows from Proposition 2 that the payment dIt = a (or dIt = Wt − W 1)

causes Wt to return to W
1 when Wt ∈ (W 1, W 1 + a] (or when Wt ∈ (W 1 + a, ∞) ). As a

result, we can also state that Wt returns to W
1 when Wt ∈ (W 1, ∞) .
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loss aversion. The reason is that the possibility of inefficient contract termi-

nation is sufficiently small for such a sufficiently high level of W so that the

marginal cost of investors paying cash to the agent becomes sufficiently small.

The sensitivity of the agent’s compensation to his continuation payoff is higher

in this range because the benefit to the agent of receiving cash is greater in

the absence of loss aversion.

The intuition for why there are two absorbing states, fW andW 1, is because

of the formulation that loss aversion implies higher sensitivity to losses than

to gains around the reference point. Hence, there exists one absorbing state

corresponding to the loss space and another absorbing state corresponding to

the gain space.

3.1.4. Further discussion The introduction of loss aversion into the continuous-

time agency model à la DeMarzo and Sannikov (2006) has three significant

effects on the optimal contract. First, the presence of loss aversion weakens

the agent’s incentive to report truthfully because diverting cash flows reduces

his disutility from loss aversion. Hence, to satisfy the incentive-compatibility

constraint for the agent, the sensitivity parameter of his continuation payoff

toward his report must increase and hence the volatility of his continuation

payoff increases. This implies that the introduction of loss aversion requires

stronger incentives along the optimal path. Furthermore, this result is not re-

stricted to the framework of the cash-diversion model. As long as the agent’s

hidden effort directly affects both the firm’s cash flow and his consumption,

we can show that this result still holds in a standard hidden effort model,

using an analysis similar to that of DeMarzo and Sannikov (2006, Section III).

By contrast, in Herweg, Müller, and Weinschenk (2010), the presence of loss

aversion gives the agent more incentive to reduce the probability of entering

the loss space. Hence, this possibility enables the principal to use weaker in-

centives under loss aversion. One reason for this difference is that in the model

of Herweg, Müller, and Weinschenk (2010), loss aversion induces the agent to

exert more effort and to avoid the high probability of a low outcome because
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his effort can affect the probability distribution of the outcome. Thus, in their

model, loss aversion can mitigate the incentive-compatibility constraint. In

fact, in the static moral hazard model of Dittmann, Maug, and Spalt (2010)

where the agent’s effort does not affect the probability distribution of the out-

come, the calibration results show that an increase in the agent’s degree of

loss aversion may induce stronger incentives.

Second, the introduction of loss aversion also affects when and how much

the agent receives in compensation in order to reduce the cost to investors.

In our continuous-time agency model, the agent’s incentive is generated only

through a variation in his continuation payoff. Thus, the payment to the agent

has no immediate effect on his incentive to report truthfully. This implies that

the problem of how the agent is given incentives can be separated from the

problem of when and howmuch compensation he receives according to the level

ofWt. This is in contrast with the standard literature of loss aversion, in which

the incentive consideration strongly affects the payment schedule to the agent.

Instead, in our model, the payment schedule to the agent depends mainly on

three factors: the agent’s degree of loss aversion, the agent’s impatience, and

the possibility of inefficient future liquidation. The first two factors relate to

the marginal benefit to investors of paying cash earlier, whereas the final factor

is concerned with the marginal cost to investors of paying cash earlier. The

optimal contract then requires investors to set the optimal cash payment so

that the marginal benefit equals the marginal cost.

Third, our result regarding the optimal cash payment indicates that in the

presence of loss aversion, there are more ranges of Wt in which the agent

is rewarded with positive compensation. Furthermore, in these ranges, the

optimal compensation schedule is of two types: payment is insensitive to Wt

or payment is increasing proportionately inWt. More specifically, the optimal

compensation schedule not only explains the existence of a flat part insensitive

to Wt when Wt is in the intermediate range, but also shows that the flat part

is preceded and followed by a range of option-type payoffs where the cash
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payment is increasing in Wt and causes Wt to stay at the absorbing states.
12

Option-type contracts are also rationalized in the static contract model of loss

aversion in de Meza and Webb (2007) and Dittmann, Maug, and Spalt (2010).

De Meza and Webb (2007) obtain option-type contracts by assuming that the

agent is risk averse in the loss space. Dittmann, Maug, and Spalt (2010) discuss

the optimality of option-type contracts, but their result depends on the feature

that the optimal contract is convex in the gain space because risk tolerance

increases quickly when the distance from the reference point increases.13 By

contrast, in our model, the optimality of the option-type contract does not

depend on the assumption of the agent’s risk aversion or risk tolerance. Rather,

option-type contracts are derived through the interaction between the agent’s

loss aversion, the agent’s impatience, and the possibility of inefficient future

liquidation. Furthermore, we show that in the presence of loss aversion, the

sensitivity of the agent’s compensation to Wt is higher in the higher range of

Wt with option-type payoffs than in the lower range.

3.2. Hidden Savings.–

We now relax our assumptions by allowing the agent to save secretly and to

steal at an unbounded rate. In fact, applying a procedure similar to that of

DeMarzo and Sannikov (2006), we can prove that even in this case, the agent

has an incentive to report truthfully and maintain zero savings even though

he can save within the firm without paying the diversion cost or can save in

his own account by paying the diversion cost.

Proposition 3: Suppose that the process Wt is bounded from above and sat-

isfies

dWt = γWtdt− dIt+ λ[1 + θ(dCt, a)](dbYt− μdt)− θ(dCt, a)(dCt− adt), (19)
12As mentioned above, Wt can be interpreted broadly as a proxy for equity value to

outside equity holders.
13Risk tolerance is defined by the inverse of absolute risk aversion. It is cheaper for the

principal to provide incentives in regions where risk tolerance is high.
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until stopping time τ = min{t | Wt = R}. If the agent cannot overreport by
putting his own money back into the project, then he receives a payoff of at most

W0 from any feasible strategy in response to a contract (τ , I). In addition, the

payoff W0 is attained if the agent reports truthfully and maintains zero savings.

Proposition 3 shows that the optimal contract given by Proposition 2 re-

mains incentive compatible, even though the agent can save secretly and steal

at an unbounded rate, if the agent cannot overreport by putting his own money

back into the project. The intuition is that under risk neutrality, the marginal

benefit to the agent of reporting or consuming cash is constant over time if

he continues to stay in the loss or gain space, and that the marginal benefit

is decreasing if the agent moves from the gain space to the loss space. As

private savings grow at rate ρ < γ, there is no incentive to save secretly or to

misrepresent income because misreporting delays consumption and may leave

the agent in the loss space in the early period if the agent cannot overreport.

4. Implementation of the Optimal Contract

The optimal contract we have derived can be implemented and interpreted

readily in terms of standard securities that include equity, long-term debt,

and a line of credit. These securities are held by widely dispersed investors or

intermediaries. As the core results describing the contracts have been given in

the preceding section, we merely reinterpret these results in this section.14

The firm raises initial capital K and possibly additional cash in an optimal

contract. The optimal contract is implemented by issuing securities at time 0.

The securities used in the implementation are the same as those in DeMarzo

and Sannikov (2006). More specifically, the agent holds a fraction α of the

firm’s equity. The remaining fraction of the firm’s equity is held by outside

investors. Equity holders receive dividend payments paid from the firm’s avail-

14The optimal contract is written conditional on the agent’s continuation payoffW . Thus,

the implementation result is unaffected regardless of whether the agent designs the securities

to maximize his own payoff or investors design the securities to maximize the value of the

firm.
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able cash or credit. However, the agent does not receive part of the liquidation

payoff. In this sense, the agent’s equity is inside equity with the provision that

it is worthless in the event of termination. Outside investors also hold long-

term debt and a line of credit. Long-term debt is a consol that pays continuous

coupons at rate x and has the face value D.15 We let the coupon rate be r,

so that D = x
r
. If the firm defaults on a coupon payment, debt holders force

termination of the project. A revolving line of credit provides the firm with

available credit up to a limit CL. Balances on the line of credit are charged a

fixed interest rate rc. The firm borrows and repays funds on the line of credit

at the discretion of the agent. If the balance on the line of credit exceeds CL,

the firm defaults and the project is terminated.

The next proposition shows that the optimal contract can be implemented

with a capital structure based on the securities introduced above.16

Proposition 4: If λ(1 + θ) ≤ 1, there exists a capital structure that imple-
ments the optimal contract and has the following features:

α = λ(1 + θ), (20a)

rDt =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
μ− γR

λ(1+θ)
− γCL − θa

λ(1+θ)
, if MW ≤Mt,

μ− γR

λ(1+θ)
− γCL − θ{(1+θ)a−[R+λ(1+θ)(CL−Mt)−W ]}

λ(1+θ)2
, if MW+(1+θ)a

≤Mt < MW ,
μ− γR

λ(1+θ)
− γCL, if 0 ≤Mt < MW+(1+θ)a

,

(20b)

CL =
W 1 + a−R
λ(1 + θ)

, (20c)

where Mt is the credit line balance, MW = CL − W−R
λ(1+θ)

, and MW+(1+θ)a
= CL

− W+(1+θ)a−R
λ(1+θ)

. The line of credit has interest rate rC = γ. For the balance

Mt ≥ 0, the agent’s continuation payoff Wt is determined by the current draw

15If D < 0, long-term debt is interpreted as a compensating balance, as in DeMarzo and

Sannikov (2006).
16In this capital structure implementation, the agent can choose when to draw on or repay

the credit line, how much to pay in dividends, and whether to accumulate cash balances

within the firm.
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Mt on the line of credit:

Wt = R+ λ(1 + θ)(CL −Mt). (21)

Furthermore, dividends are also paid according to the current draw Mt:

dDivt =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if MW ≤Mt,

R+λ(1+θ)(CL−Mt)−W
λ(1+θ)2

, if MW+(1+θ)a
≤Mt < MW ,

a
λ(1+θ)

, if 0 < Mt < MW+(1+θ)a
.

(22)

Once the line of credit is fully repaid, all excess cash flows are issued to the

agent as dividends or stock options that are bought back by the firm immedi-

ately.

Comparing the result of Proposition 4 with that in DeMarzo and Sannikov

(2006, Proposition 3), we can explain how the degree of loss aversion affects

the implementation procedure. First, (20a) shows that in order to eliminate

the agent’s incentive to divert cash, investors need to provide the agent with a

fraction of equity λ(1 + θ), which is larger than that in their model. That is,

the agent’s equity holding ratio is increasing in λ and θ in our model, whereas

it is increasing only in λ in DeMarzo and Sannikov (2006). The intuition for

this difference is that in our model, underreporting income by one unit not

only increases consumption by λ but also reduces the agent’s disutility from

loss aversion in the loss space by λθ. Thus, with a higher λ or θ, investors

must increase the agent’s equity holding ratio in order to provide the agent

with adequate incentive to report a true realization of income.17 In addition, if

λ(1 + θ) > 1, the agent’s share of equity exceeds 1. Hence, the implementation

17In the static moral hazard model with loss aversion of Herweg, Müller, and Weinschenk

(2010), the principal uses weaker incentives when θ increases. In our context, this implies

that the agent’s equity holding ratio is decreasing in θ. Such a difference stems from the

fact that in their model, loss aversion is associated with a strong incentive for the agent

to choose a high effort to reduce the scope for incurring a loss. Hence, unlike our model,

loss aversion reduces the need for investors to give the agent more equity grants in order to

induce him to choose a high effort.
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procedure given by Proposition 4 is impossible if λ(1 + θ) > 1.

Second, as in DeMarzo and Sannikov (2006), equation (21) ensures that

the agent does not pay dividends prematurely by drawing down the line of

credit CL − M immediately and then defaulting. This is because (21) implies

that the sum of the agent’s immediate payoff, the reduction of his disutility

from loss aversion, and his termination payoff when he follows this deviation–

the right-hand side of (21)–would be equal to Wt, which he can receive by

committing to the rule of our capital structure implementation.

Third, as long as θ > 0, (20b) shows that long-term debt is larger in our

model than in DeMarzo and Sannikov (2006, equation (17)) if the credit line

balance is sufficiently low (0 ≤ Mt < MW+(1+θ)a
). However, if the credit

line balance is not sufficiently low (MW+(1+θ)a
≤ Mt), we cannot determine

unambiguously whether long-term debt is larger in our model than in their

model. In addition, unlike their model, long-term debt is decreasing in Mt if

the credit line balance is in the intermediate range (MW+(1+θ)a
≤ Mt < MW ).

Intuitively, for a givenMt, the role of long-term debt is to adjust the profit rate

of the firm so that Wt satisfies (21). Indeed, if Mt is not sufficiently low, the

agent’s compensation is less than the reference point. Thus, long-term debt

can be reduced by an amount that is proportional to the agent’s disutility from

loss aversion. By contrast, if Mt is sufficiently low, the agent’s compensation

equals the reference point. As the agent’s disutility from loss aversion is equal

to zero, long-term debt need not be adjusted by his disutility from loss aversion

in this case. However, under loss aversion, Wt must increase to satisfy (21)

relative to Mt because the sensitivity of Wt with respect to the agent’s report

increases up to λ(1 + θ). Hence, long-term debt becomes larger in our model

than in their model if Mt is sufficiently low. In the intermediate range of

Mt, long-term debt can be decreasing in Mt because dividend payments are

decreasing in Mt, as argued below.

Fourth, in our model, dividends are paid as long as the credit line balance

is Mt < MW , whereas in DeMarzo and Sannikov (2006), dividends are paid
only when the credit line balance is Mt = 0. Furthermore, in our model, if
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the credit line balance is sufficiently low, dividend payments are positive but

independent of Mt (and Wt), that is, insensitive to the firm’s performance; if

the credit line balance is intermediate, dividend payments are decreasing in

Mt; and if the credit line balance is sufficiently large, no dividends are paid.

Thus, overall, dividend payments are nonincreasing in Mt. Hence, a large

line of credit delays or reduces the agent’s consumption, but also provides the

project with more flexibility by delaying termination. The intuition is that

loss aversion induces investors to pay cash earlier in our optimal contract.

Thus, dividends must be paid before the credit line balance decreases to zero.

Furthermore, if Mt increases, then Wt must decrease in order to satisfy the

incentive-compatibility constraint of our capital structure, (21). Given that

the agent’s compensation is increasing in Wt for Wt ∈ (fW, fW + (1 + θ)a]

(or independent of Wt for Wt ∈ [R, fW ] ∪ (fW + (1 + θ)a, W 1 + a)) and

that the agent’s compensation is paid as dividends in this capital structure,

dividend payments must be decreasing in Mt for Mt ∈ [MW+(1+θ)a
, MW ) (or

independent of Mt for Mt ∈ (0, MW+(1+θ)a
) ∪ [MW , ∞)).

Finally, if γ is close to r, the total debt capacity of the firm is represented

by

Dt + C
L

'

⎧⎪⎪⎪⎨⎪⎪⎪⎩
μ

γ
− R

λ(1+θ)
− θa

γλ(1+θ)
, if MW ≤Mt,

μ

γ
− R

λ(1+θ)
− θ{(1+θ)a−[R+λ(1+θ)(CL−Mt)−W ]}

γλ(1+θ)2
, if MW+(1+θ)a

≤Mt < MW ,
μ

γ
− R

λ(1+θ)
, if 0 ≤Mt < MW+(1+θ)a

.

(23)

As the right-hand side of (23) depends on Mt in the intermediate range of

Mt, the total debt capacity of the firm is sensitive to the volatility, σ, and the

liquidation value, L, unlike in DeMarzo and Sannikov (2006).
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5. Empirical Implications

In this section, we discuss the empirical implications of our model with

respect to the following issues: (i) the evolution of CEO compensation and

the low level of stability of CEOs’ fractional equity ownership after World

War II in the United States, and (ii) corporate dividend-smoothing policy.

We begin by providing empirical implications for the first issue. Broadly

speaking, after World War II, the evolution of CEO compensation can be

divided into three distinct periods (see Frydman and Jenter (2010) and Fry-

dman and Saks (2010)). Before the 1970s, low levels of pay, little disper-

sion across top managers, and moderate pay—performance sensitivities were

observed. From the mid-1970s to the end of the 1990s, compensation lev-

els trended upward dramatically, differences in compensation across managers

and firms increased, and, in particular, stock options grew substantially to

become the single largest component of CEO compensation in the 1990s. The

sensitivity of CEO wealth to firm performance also surged in the 1990s, mostly

because of rapidly growing option portfolios. During the 2000s, average CEO

compensation declined, and restricted stock grants replaced stock options as

the most popular form of stock compensation. However, most CEOs’ fractional

equity ownership remained low throughout these three periods, although it has

increased slowly.

There are two prominent theories for explaining the evolution of CEO com-

pensation. One is the managerial power (rent extraction) theory in which

the high level of CEO compensation is the result of executives’ ability to set

their own pay and extract rents from the firms they manage (see Bebchuk and

Fried (2003, 2004)). The other is the competitive pay theory in which the high

level of CEO compensation is viewed as the efficient outcome of a managerial

labor market where firms optimally compete for managerial effort or talent

(for a review of the literature, see Frydman and Jenter (2010)). However, in

light of the evidence that corporate governance has strengthened considerably

over the past 30 years (see Holmstrom and Kaplan (2001), Hermalin (2005),
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and Kaplan (2008)), the managerial power theory cannot explain the steady

increase in CEO compensation since the 1970s. Although market-based and

optimal contracting explanations for CEO pay have the predicted effects, the

estimated magnitudes are modest, and so they leave much of the sharp rise

in CEO compensation unexplained (for a discussion, see Frydman and Jenter

(2010)). Thus, none of these theories provides a fully convincing explanation

for the evolution of CEO compensation since the 1970s. In particular, these

hypotheses fail to explain the explosive growth of options in the 1990s and

the recent replacement of options by restricted stock, even while most CEOs’

fractional equity ownership remained low in these periods.

In our model, equity holders receive total dividends of dDivt = dIt/λ(1 + θ)

per share because the agent receives a fraction λ(1 + θ). At contract termina-

tion, outside equity holders also receive the remaining part of the liquidation

value, LE = max(0, L − D − CL)/[1 − λ(1 + θ)], per share after the debt and

the line of credit have been paid off. Then, the per share value of equity to out-

side equity holders is represented by VE(W ) = E
£R τ

0
e−rsdDivs + e−rτLE

¯̄
W
¤
.

If the liquidation value received by outside equity holders is sufficiently small

at termination, VE(W ) is nondecreasing in W because dDiv or dI is nonde-

creasing in W . Thus, W can be viewed broadly as a proxy for equity value to

outside equity holders.

Then, the optimal compensation policy given by Proposition 2 in our model

can be interpreted literally as an option-like scheme. IfW is sufficiently small,

the agent is paid nothing. If W is in the middle range, the agent is paid by

salary and bonus or by dividends from restricted stock; however, in the case

of relatively small W in this range, his compensation is reduced according

to W when W decreases. If W is sufficiently large, the agent additionally

receives option grants and exercises them immediately;18 furthermore, pay—

performance sensitivity is higher in this range ofW than in any other range of

18These option grants may include performance-based vesting provisions that allow man-

agers to cash in the vested stock/options once they achieve a certain performance target

(see Bettis, Bizjak, Coles and Kalpathy (2010)).
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W . Hence, in our model, the evolution of CEO compensation can be explained

by the evolution of W , that is, equity value to outside investors. Before the

1970s, equity values remained low. From the mid-1970s to the end of the 1990s,

equity values grew rapidly; the result was explosive growth in option grants.

During the 2000s, equity values declined, as did the use of option grants.19

In addition, in our model, the agent holds a fraction of equity, λ(1 + θ).

Suppose that an increase in firm size, a complicated change in technology or

a higher volatility of the business environment gradually increases the mag-

nitude of the agency problem λ or the degree of loss aversion θ. Then, these

changes gradually induce larger firms, more technology-oriented firms or firms

facing more competitive and riskier environments to grant more equity to their

managers. If these changes occur gradually over time, most CEOs’ fractional

equity ownership will remain low in these periods. Thus, our model provides

explanations for not only the evolution of CEO compensation after World War

II but also the low fractional ownership levels of most CEOs in the same period,

even though CEOs’ fractional equity ownership is gradually increasing.

For the evolution of dividends, our theory also derives new implications of

why firms smooth dividends or what determines a firm’s propensity to smooth

dividends. Dividend smoothing is one of the most widely documented phe-

nomena in corporate financing policy, because firms’ primary concern is the

stability of dividends (see Leary andMichaely (2011)). In the past two decades,

stock repurchases have been used increasingly in place of dividends (see Skin-

ner (2008)). Hence, when we derive implications from our results, we may

interpret dDiv as the total payout policy that includes dividends and stock

repurchases, although the total payout is significantly less smoothed than div-

idends (see Skinner (2008) and Leary and Michaely (2011)).

Now, our result of the evolution of dDiv given by (22) shows that there is

an interval over which dDiv is actually paid and is smoothed. This smoothing

19It is difficult to explain the evolution of CEO compensation within the framework of

DeMarzo and Sannikov (2006) because in their model, CEO compensation is paid as an

immediate payment only when W reaches a threshold level.
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range with a positive payment cannot be derived by the model of DeMarzo

and Sannikov (2006). The reason is that in their model, dividends are not

paid until the line of credit is fully repaid, and all excess cash flows are paid

as dividends once the line of credit is fully repaid.

The existing theories for why firms smooth their dividends are based on

asymmetric information, agency considerations, external finance costs, or tax

planning (for a review of the literature, see Leary and Michaely (2011)). How-

ever, the empirical evidence is inconsistent with the asymmetric information

model, although more consistent with the agency conflict model (see Leary

and Michaely (2011)). A recent paper by Baker and Wurgler (2010) indicates

that firms will smooth their dividends more the more that loss-averse investors

value dividends relative to a reference point of prior dividends. Our explana-

tion of dividend smoothing is similar to theirs in its use of the loss-aversion

model, even though our framework is based on the continuous-time agency

model.

6. Conclusion

In this paper, we explored a continuous-time agency model in which the

agent has loss-aversion preferences, as introduced by prospect theory (Kah-

neman and Tversky (1979)). To formalize the model, we generalized the

continuous-time agency model of DeMarzo and Sannikov (2006) by incorpo-

rating loss aversion.

Our main results are summarized as follows.

(i) The optimal contract includes a range of the agent’s continuation payoff in

which he is rewarded with fixed cash compensation. At each end of the flat

segment, there is a range of the lower level of the agent’s continuation payoff

in which the fixed cash compensation is reduced according to his continua-

tion payoff when his continuation payoff decreases, and a range of the higher

level of the agent’s continuation payoff in which all excess cash flows are paid

immediately as the exercise of option grants. The sensitivity of the agent’s
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compensation to his continuation payoff is larger in the latter nonflat range

than in the former.

(ii) The introduction of loss aversion induces investors to reward the agent

earlier.

(iii) An increase in the agent’s degree of loss aversion induces investors to use

stronger incentives.

(iv) As in DeMarzo and Sannikov (2006), the optimal contract is implemented

by the combination of equity, long-term debt, and a line of credit.

(v) Our theoretical findings provided some explanations for the evolution of

CEO compensation in the United States since World War II as well as the low

level of stability of CEOs’ fractional equity ownership in the same period, and

for the corporate dividend-smoothing policy.

For the sake of the tractability of our dynamic contracting problem, we have

assumed throughout this paper that reference income is exogenous, and that

the agent is risk neutral. However, exogenous reference income may not always

be plausible, although it provides a useful benchmark. For example, de Meza

and Webb (2007) consider the median reference wage for the endogenous refer-

ence point. It would be interesting to use such an index as a reference point. It

would also be interesting to examine the interaction between the degrees of loss

aversion and risk aversion under the continuous-time agency framework. We

could then address the problem of private savings, as highlighted in Edmans,

Gabaix, Sadzik, and Sannikov (2012) and He (2012).
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Appendix (For Online Publication except the proofs of Lemma 2,

Proposition 1, and Lemma A1)

Proof of Lemma 1: Using procedures similar to those in the proof of Lemma

1 in the Appendix in DeMarzo and Sannikov (2006), we can prove this lemma.

Note that the loss-aversion component does not modify the proof. ¥

Proof of Lemma 2: We first show that the agent’s continuation value Wt

evolves according to (8). Wt(bY ) is the agent’s continuation payoff if bYs, 0 ≤ s
≤ t were the true cash flows and the agent reported truthfully. Hence, without
loss of generality, we can prove (8) when the agent truthfully reports bY = Y .20
Now, let

Vt =

Z t

0

e−γs {dIs(Y ) + θ(dIs(Y ), a) [dIs(Y )− ads]}+ e−γtWt(Y ). (A1)

We now prove that Vt is a martingale. Indeed, it follows from (7) and (A1)

that for s < t,

E (Vt |Fs)

= E(Vt − Vs + Vs | Fs)

= E

½Z t

s

e−γk [dIk(Y ) + θ(dIk(Y ), a)(dIk(Y )− adk)] + e−γtWt(Y ) | Fs
¾

− e−γsWs(Y ) + Vs

= E

½Z t

s

e−γk [dIk(Y ) + θ(dIk(Y ), a)(dIk(Y )− adk)]

+e−γt
£R τ

t
e−γ(k−t)[dIk(Y ) + θ(dIk(Y ), a)(dIk(Y )− adk)] + e−γ(τ−t)R

¤ | Fsª
− e−γsWs(Y ) + Vs

= E

½Z τ

s

e−γk [dIk(Y ) + θ(dIk(Y ), a)(dIk(Y )− adk)] + e−γτR | Fs
¾

− e−γsWs(Y ) + Vs

20By Lipschitz continuity of Yt − bYt, the probability measures over the paths of Y and bY
are equivalent.
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= e−γsE

½Z τ

s

e−γ(k−s) [dIk(Y ) + θ(dIk(Y ), a)(dIk(Y )− adk)] + e−γ(τ−s)R | Fs
¾

− e−γsWs(Y ) + Vs

= e−γsWs(Y )− e−γsWs(Y ) + Vs = Vs.

Because Vt is a martingale, it follows from the martingale representation the-

orem that there is a process β ≡ {βt : 0 ≤ t ≤ τ} such that

dVt = e
−γtβt(Y )(dYt − μdt),

where dYt−μdt is a multiple of the standard Brownian motion. Differentiating
(A1) with respect to t, we have

dVt = e
−γtβt(Y )(dYt − μdt)

= e−γt [dIt(Y ) + θ(dIt(Y ), a)(dIt(Y )− adt)]− γe−γtWt(Y )dt+ e
−γtdWt(Y ).

Thus, given dIt = dCt when bY = Y , (8) is obtained.
We next prove that (9) is the incentive-compatible constraint. If the agent

diverts dYt − dbYt at time t, he gains immediate income λ(dYt − dbYt) but loses
βt(dYt − dbYt) in future expected payoffs. In addition, he reduces disutility
from loss aversion, λθ(dCt(Y ), a)(dYt − dbYt). Hence, reporting strategy bY
gives the agent the payoff

W0+E

½Z τ

0

e−γt
h
λ(dYt − dbYt) + λθ(dCt(Y ), a)(dYt − dbYt)− βt(dYt − dbYt)i¾ ,

(A2)

where W0 denotes the agent’s payoff under truth telling. We see that if βt ≥
λ[1 + θ(dCt, a)] for all t, (A2) is maximized when the agent chooses dYt =

dbYt for any t because the agent cannot overreport cash flows. If βt < λ[1 +

θ(dCt, a)] on a set of positive measures, the agent is better off underreporting

on this set than always telling the truth. ¥

Proof of Proposition 1: (i) Because fW + θa < W 1, we divide the range
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of W into the following four segments: (a) W ≤ fW , (b) fW < W ≤ fW + (1

+ θ)a, (c) fW + (1 + θ)a < W ≤ W 1 + a, and (d) W 1 + a < W . It follows

from the definition of fW that if dI ≤ a, the optimal contract does not pay out
any cash (dI = 0) until Wt exceeds the reflecting barrier fW . Hence, when W
≤ fW , it is optimal for investors to set dI = 0. When fW < W ≤ fW + (1 +

θ)a, it follows from b0(W ) < 0 that investors find it optimal to achieve b0(fW )
= − 1

1+θ
by paying dI = W−W

1+θ
and returning W to fW .21 Note that for this

range of W , the condition of dI ≤ a is satisfied. Thus, when fW < W ≤ fW
+ (1 + θ)a, we have dI = W−W

1+θ
. When fW + (1 + θ)a < W ≤ W 1 + a, it

would still be optimal for investors to achieve b0(fW ) = − 1
1+θ

by paying dI =

W−W
1+θ

and returning W to fW if dI ≤ a were satisfied. However, in this range
of W , we see that dI > a would hold if the agent were paid dI = W−W

1+θ
. As

a result, it is optimal for investors to increase dI up to a, but not beyond a.

Finally, when W 1 + a < W , it follows from b0(W ) < 0 andW − W 1 > a that

it is optimal for investors to achieve b0(W 1) = −1 by paying dI = W − W 1

and returning W to W 1. Note that the optimal contract pays out cash dI >

0 for W ∈ (W 1 + a, ∞) because Wt exceeds the reflecting barrier W
1 when

dI > a.

(ii) In this case, because W 1 + a ≤ fW + (1 + θ)a, we divide the range of W

into the following three segments: (a) W ≤ fW , (b) fW < W ≤ W 1 + a, and

(c) W 1 + a < W . When fW < W ≤ W 1 + a, investors can achieve b0(fW ) =
− 1
1+θ

by paying dI = W−W
1+θ

and returning W to fW . The reason is that this
payment policy ensures that dI ≤ a holds under the assumption of W 1 ≤ fW
+ θa. Hence, it is optimal for investors to set dIt = 0 for W ≤ fW , and dIt =
W−W
1+θ

for fW < W ≤ W 1 + a. In fact, if the agent is paid dI = W − W 1, dI

> a holds as long as W 1 + a < W . Thus, when W 1 + a < W , it follows from

b0(W ) < 0 and W − W 1 > a that it is optimal for investors to achieve b0(W 1)

= −1 by paying dI = W − W 1 and returning W to W 1. ¥
21Because b0(fW ) = − 1

1+θ
and b00(W ) < 0, as verified in Proposition 2, we see that b0(W )

< 0 for any W ≥ fW .
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Proof of Proposition 2: We start by showing that b−(W ) (or b+(W )) is

strictly concave on [R, fW ) (or W ∈ (fW + (1 + θ)a, W 1 + a)).

Lemma A1. The function b−(W ) is strictly concave on [R, fW ).
Proof: Define the function F−(W ) as F−(W ) = W + (1 + θ)b−(W ). Then,

using (14a), F−(W ) satisfies the following differential equation:

rF−(W ) = −(γ − r)W + (1 + θ)μ− θa+ (γW + θa)F 0−(W )

+
1

2
λ2(1 + θ)2σ2F 00−(W ), for W ∈ [R,fW ], (A3)

with the boundary conditions

F−(R) = R+ (1 + θ)L, F 0−(fW ) = 0, and F 00−(fW ) = 0.
Let us now focus on W in the neighborhood of the reflection barrier of W =fW , that is, W ∈ [fW − ²1, fW ]. Differentiating (A3) with respect to W and

using the boundary conditions yields

dF 00−(W )
dW

' 2(γ − r)
λ2(1 + θ)2σ2

> 0, for sufficiently small ²1 > 0.

Because F 00−(fW ) = 0 and dF 00−(W )

dW
> 0, this implies that there exists ²2 > 0 such

that F 00−(W ) < 0 over the interval [fW − ²2, fW ). In addition, as F 0−(fW ) = 0
and F 00−(W ) < 0 over the interval [fW − ²2, fW ), we also have F 0−(W ) > 0 over
the interval [fW − ²2, fW ).
Now, it follows from (A3) that

F 00−(W ) =
rF−(W ) + (γ − r)W − (1 + θ)μ+ θa− (γW + θa)F 0−(W )

1
2
λ2(1 + θ)2σ2

=
G−(W )− (γW + θa)F 0−(W )

1
2
λ2(1 + θ)2σ2

, (A4)

where G−(W ) ≡ rF−(W ) + (γ − r)W − (1 + θ)μ + θa. It also follows from
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(A3) with the boundary conditions that

G−(fW ) = 0. (A5)

Furthermore,

G0−(W ) = rF
0
−(W ) + γ − r. (A6)

Then, using (A4)—(A6), we can show that F 00−(W ) < 0 for any W ∈ [R, fW )
if F 0−(W ) > 0 for any W ∈ [R, fW ).22 To prove F 0−(W ) > 0 for any W ∈ [R,fW ), suppose that F 0−(W ) ≤ 0 for some W ∈ [R, fW − ²2). Let W ◦ ≡ sup {W
≤ fW − ²2 : F 0−(W ) ≤ 0}. Because we have already shown that F 0−(W ) > 0
for all W ∈ [fW − ²2, fW ), we must have F 0−(W ◦) = 0 and F 0−(W ) > 0 for all

W ∈ (W ◦, fW ). However, given (A5) and (A6), this implies that G−(W ) <
0 for all W ∈ (W ◦, fW ). Thus, we must have F 00−(W ) < 0 for all W ∈ (W ◦,fW ). On the other hand, F 0−(fW ) = F 0−(W ◦) +

R W
W◦F

00
−(W )dW . It follows from

F 0−(fW ) = 0 that
F 0−(W

◦) = −R W
W◦F

00
−(W )dW. (A7)

As F 00−(W ) < 0 for all W ∈ (W ◦, fW ), the right-hand side of (A7) is positive.
This implies that F 0−(W

◦) > 0, which is a contradiction. Thus, we obtain

F 0−(W ) > 0 for all W ∈ [R, fW ). As a result, we must also have F 00−(W ) < 0
for all W ∈ [R, fW ). Because b00−(W ) = F 00−(W ), we complete the proof of this
lemma. k

Lemma A2. The function b+(W ) is strictly concave onW ∈ (fW + (1 + θ)a,

W 1 + a).

Proof: Define the function F+(W ) as F+(W ) = W + b+(W ). Using (14b),

22Given (A5) and (A6), note that G−(W ) < 0 for any W ∈ [R, fW ) if F 0−(W ) > 0 for any
W ∈ [R, fW ).
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F+(W ) satisfies the following differential equation:

rF+(W ) = −(γ − r)W + μ+ (γW − a)F 0+(W ) +
1

2
λ2(1 + θ)2σ2F 00+(W ),

for W ∈ (fW + (1 + θ)a, W 1 + a], (A8)

with the boundary conditions

F−(fW +(1+θ)a) = F+(fW +(1+θ)a), F 0+(W
1+a) = 0, and F 00+(W

1+a) = 0.

Then, repeating a procedure similar to that of Lemma A1, we can prove this

lemma. k

Now, note that

b0−(W ) = −
1

1 + θ
, for all W ∈ [fW, fW + (1 + θ)a],

b0+(W ) = −1, for all W ∈ [W 1 + a, ∞).

In addition, the optimal payment conditions imply that b0−(W ) ≥ − 1
1+θ

for all

W ∈ [R, fW ) and b0+(W ) ≥ −1 for all W ∈ (fW + (1 + θ)a, W 1 + a]. In the

neighborhood of W = fW + (1 + θ)a, investors pay dI = W−W
1+θ

for W ≤ fW
+ (1 + θ)a, and dI = a for W > fW + (1 + θ)a. Because lim

W→W+(1+θ)a−0
dI

= lim
W→W+(1+θ)a+0

dI = a and the cash payment satisfies dI ≤ a at W = fW +

(1 + θ)a, we also have lim
W→W+(1+θ)a−0

b0−(W ) = lim
W→W+(1+θ)a+0

b0+(W ) = − 1
1+θ
.

Thus, combining the results of Lemmas A1 and A2 with the above findings,

we verify that the function b(W ) is concave on [R, ∞).
Next, for any incentive-compatible contract (τ , I), define

Jt =

Z t

0

e−rs(dYs − dIs) + e−rtb(Wt),

where Wt evolves according to (8) with dCt = dIt. Note that the process J

is such that Jt is Ft-measurable. It follows from Ito’s lemma that under an
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arbitrary incentive-compatible contract (τ , I),

ertdJt =

∙
μ+ γWtb

0(Wt) +
1

2
β2tσ

2b00(Wt)− rb(Wt)

¸
dt− [1 + b0(Wt)]dIt

− θ(dIt, a)(dIt − adt)b0(Wt) + [1 + βtb
0(Wt)]σdZt. (A9)

Thus, for Wt ∈ [R, fW ], it is found from (14a) and (A9) that

ertdJt =
1

2

£
β2t − λ2(1 + θ)2

¤
σ2b00−(Wt)dt−

©
1 + [1 + θ(dIt, a)]b

0
−(Wt)

ª
dIt

+ [θ(dIt, a)− θ] b0−(Wt)adt+ [1 + βtb
0
−(Wt)]σdZt. (A10)

The first component of the right-hand side of (A10) is less than or equal to 0

because of b00−(Wt) < 0 for Wt ∈ [R, fW ) from Lemma A1 and b00−(fW ) = 0, and
βt ≥ λ(1 + θ) for Wt ∈ [R, fW ] from Lemma 2. The sum of the second and

third components is also less than or equal to zero. The reason is as follows.

If dIt ≤ adt, then θ(dIt, a) = θ. Given that b0−(W ) ≥ − 1
1+θ

for Wt ∈ [R, fW ]
and dIt ≥ 0, the sum of these components is less than or equal to zero. If dIt

> adt, then θ(dIt, a) = 0. Thus, the sum of these components equals −dIt
− [dIt + θadt]b0−(Wt). If b

0
−(Wt) ≥ 0, this is less than or equal to zero. If

b0−(Wt) < 0, it follows from dIt > adt and b0−(Wt) ≥ − 1
1+θ

that the sum of

these components is less than or equal to zero.

For Wt ∈ (fW + (1 + θ)a, W 1 + a], it follows from (14b) and (A9) that

ertdJt =
1

2

£
β2t − λ2(1 + θ)2

¤
σ2b00+(Wt)dt+

©
1 + [1 + θ(dIt, a)]b

0
+(Wt)

ª
(adt− dIt)

+ [1 + βtb
0
+(Wt)]σdZt. (A11)

Again, given Lemma A2, b00+(W
1 + a) = 0, and Lemma 2, the first component

of the right-hand side of (A11) is less than or equal to zero whenWt ∈ (fW + (1

+ θ)a, W 1 + a]. The second component is also less than or equal to zero. The

reason is as follows. If dIt ≤ adt, then θ(dIt, a) = θ. Given lim
W→W+(1+θ)a+0

b0+(W )

= − 1
1+θ
, b0+(W

1+a) = −1, and Lemma A2, we have − 1
1+θ

> b0+(W ) > −1 for
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Wt ∈ (fW + (1 + θ)a, W 1 + a]. Thus, this component is less than or equal

to zero. If dIt > adt, then θ(dIt, a) = 0. Hence, it follows from b0+(W ) ≥ −1
that this component is also less than or equal to zero.

For Wt ∈ (fW, fW + (1 + θ)a], under an arbitrary incentive-compatible

contract (τ , I), it follows from (15a), (16), and (A9) that

ertdJt =

∙
μ− γWt

1 + θ
− rb−(Wt)

¸
dt− θ

1 + θ
dIt +

θ(dIt, a)(dIt − adt)
1 + θ

+

µ
1− βt

1 + θ

¶
σdZt

= −(γ − r)(Wt −fW )
1 + θ

dt+
[θ(dIt, a)− θ] (dIt − adt)

1 + θ
+

µ
1− βt

1 + θ

¶
σdZt.

(A12)

As Wt ∈ (fW, fW + (1 + θ)a], the first component of the right-hand side of

(A12) is less than zero. The second component is also less than or equal to

zero because θ(dIt, a) = θ for dIt ≤ adt and θ(dIt, a) = 0 for dIt > adt.

Equations (A10)—(A12) imply that the process J is an Ft-supermartingale
up to time t = τ . Furthermore, the process J will be an Ft-martingale for
Wt ∈ [R, fW ] and Wt ∈ (fW + (1 + θ)a, W 1 + a] under the contract satisfying

the conditions of this proposition because βt = λ(1 + θ), dIt = 0, and θ(dIt, a)

= θ forWt ∈ [R,fW ], and βt = λ(1 + θ) and dIt = adt forWt ∈ (fW + (1 + θ)a,

W 1 + a]. The process J will also be an Ft-martingale forWt ∈ (fW,fW + (1 +

θ)a] because θ(dIt, a) = θ and the agent returns Wt to fW immediately. Thus,

the process J is an Ft-martingale under the contract satisfying the conditions
of this proposition up to time t = τ .

We now evaluate the principal’s expected payoff for an arbitrary incentive-

compatible contract (τ , I), which equals

E

∙Z τ

0

e−rs(dYs − dIs) + e−rτL
¸
.

Using the definition of process J , we show that under any arbitrary incentive-
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compatible contract (τ , I) and any t ∈ [0, ∞),

E

∙Z τ

0

e−rs(dYs − dIs) + e−rτL
¸

= E(Jt∧τ ) +E

½
1t≤τ

∙Z τ

t

e−rs(dYs − dIs) + e−rτL− e−rtb(Wt)

¸¾
≤ b(W0) +E

½
1t≤τ

∙Z τ

t

er(t−s)(dYs − dIs) + er(t−τ)L− b(Wt) | Ft
¸¾
e−rt,

(A13)

where the inequality follows from the fact that Jt∧τ is a supermartingale and

J0 = b(W0). In addition,

E

½
1t≤τ

∙Z τ

t

er(t−s)(dYs − dIs) + er(t−τ)L | Ft
¸¾

<
μ

r
−Wt. (A14)

This is because the right-hand side of (A14) is the upper bound on the prin-

cipal’s expected profit under the first-best contract. Combining (A13) and

(A14), we obtain

E

∙Z τ

0

e−rs(dYs − dIs) + e−rτL
¸
≤ b(W0) +E

n
1t≤τ

hμ
r
−Wt − b(Wt)

io
e−rt.

(A15)

Using b0(Wt) ≥ −1 and b(R) = L, we have Wt + b(Wt) ≥ L for any Wt ≥ R.
Hence, applying this to (A15), we have

E

∙Z τ

0

e−rs(dYs − dIs) + e−rτL
¸
≤ b(W0) + e

−rtE
h
1t≤τ

³μ
r
− L

´i
.

Taking t→∞ yields

E

∙Z τ

0

e−rs(dYs − dIs) + e−rτL
¸
≤ b(W0).

Let (τ ∗, I∗) be a contract that satisfies the conditions of the proposition. This

contract is incentive compatible because βt = λ(1 + θ) when dIt ≤ a. Further-
more, under this contract, the process J is a martingale until time τ because
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b0(Wt) stays bounded. Therefore, the payoff b(W0) is achieved with equality

under (τ ∗, I∗). ¥

Proof of Proposition 3: As ρ ≤ r, we focus on the case of ρ = r with-

out loss of generality because maintaining savings is most attractive in this

case. We also generalize the setting by allowing the agent to save not only in

his own account but also within the firm. Let S
f
t denote the savings within

the firm, which evolves according to

dS
f
t = rS

f
t dt+ dYt − dbYt − dQt,

where dQt is the agent’s diversion of the cash flows to his own account. The

agent’s balance St also evolves by

dSt = rStdt+ [dQt]
λ
+ dIt − dCt.

Note that the agent bears the cost of diversion when he diverts the cash flows

to his own account. For an arbitrary feasible strategy (C, bY ) of the agent, let
bVt = Z t

0

e−γs [dCs + θ(Cs, a)(dCs − ads)] + e−γt(St + λS
f
t +Wt).

To prove that bVt is a supermartingale, let us note that
eγtdbVt = dCt+θ(dCt, a)(dCt−adt)+dSt−γStdt+λ(dSft −γSft dt)+dWt−γWtdt.

It follows from (19) and the definitions of dSt and dS
f
t that

eγtdbVt = −(γ − r)(St + λS
f
t )dt+ [dQt]

λ − λdQt

+ λ[1 + θ(dCt, a)]σdZt + λθ(dCt, a)(dbYt − dYt).
bVt is now a supermartingale until time τ because γ > r, [dQt]

λ − λdQt is
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nonincreasing, the savings balances are nonnegative, overreporting by putting

the agent’s own money back into the project is not allowed (that is, dbYt ≤
dYt), and Wt is bounded from below (that is, Wt ≥ R). Furthermore, bVt is a
martingale if Wt is bounded from above, if there are no savings (that is, St =

S
f
t = 0), and if the agent reports truthfully (d

bYt = dYt and dQt = 0). Hence,
W0 = bV0 ≥ E(bVτ)

= E

∙Z τ

0

£
e−γsdCs + θ(Cs, a)(dCs − ads)

¤
+ e−γτ(Sτ + λSfτ +R)

¸
,

with equality if the agent maintains zero savings and reports truthfully. This

statement holds even if Yt − bYt is not Lipschitz continuous. ¥
Proof of Proposition 4: For dDivt given by (22), the credit line balance,

Mt, evolves according to

dMt = γMt + xtdt+ dDivt − dbYt, (A17)

where we can assume that dbYt is such that dMt ≥ 0. It follows from (4), (20b),
(20c), (21), Proposition 1(i), and the definitions of MW and MW+(1+θ)a

that

λ(1 + θ)xtdt = λ(1 + θ)rDtdt

=
£
λ(1 + θ)μ− γR− γλ(1 + θ)CL

¤
dt− θ(dIt, a)(−dIt + adt).

(A18)

It also follows from (21) with (A17) and (A18) that

dWt = −λ(1 + θ)dMt = −λ(1 + θ)
³
γMtdt+ xtdt+ dDivt − dbYt´

= γWtdt+ θ(dIt, a)(−dIt + adt)− λ(1 + θ)dDivt + λ(1 + θ)(dbYt − μdt).

(A19)
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Let dCt = dIt = λ(1 + θ)dDivt, and note that θ(dIt, a) = θ because λ(1 +

θ)dDivt ≤ a for Mt > 0. Then, it follows from Propositions 2 and 3 that the

capital structure given by this proposition is optimal for the agent.

Under the capital structure proposed by this proposition and the agent’s

optimal strategy (I, bY ) = (C, bY ) = (C∗, Y ), the principal’s expected utility

equals

E

"Z τ(C∗,Y )

0

e−rs (dYs − dC∗s ) + e−rτ(C
∗,Y )L | F0

#
−K,

where τ(C∗, Y ) = inf{t |Wt = R} = τ ∗(Y ). Note that the agent’s continuation

utilityWt evolves according to (A19) (that is, (19)), as in the optimal contract.

In addition, it follows from (20c) and (21) that Mt = MW , Mt = MW+(1+θ)a
,

and Mt = 0 implies Wt = fW , Wt = fW + (1 + θ)a, and Wt = W 1 + a,

respectively. Hence, the capital structure given by this proposition is also

optimal for the principal. We therefore conclude that the proposed capital

structure implements the optimal contract. ¥
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