The Challenges of Publishing in Top-Tier Finance Journals

First Meeting of the Association of Behavioral Economics

Professor Michael Lemmon University of Utah and Hong Kong University of Science and Technology

Publishing in top-tier finance journals

- Bad News.
- And
- Good News.
- Lets start with the bad news first.

Publishing in general is difficult

 "Production in the Finance Literature, Institutional Reputation, and Labor Mobility in Academia: A Global Perspective," Kam C. Chan, Carl R. Chen, and Thomas L. Steiner, Financial Management, Volume 31, Number 4, Winter, 2002

Number of publications in 16 academic journals

- Out of 4,990 unique authors, 55% published only one article over the twelve year period.
- 71% published no more than two articles.
- The top 5% published 8 or more articles.
- Publishing is hard work!

Why not publish in top-tier journals?

• It is harder to do in the top journals.

JFE Rejection Rates & Turnaround Times

Why not publish in top-tier journals?

• And it is not getting any easier.

2006 Rejection Rates of Top Finance JournalsJFJFERFSRejection Rate92.86%88.50%86.17%

• So, what's the good news?

Why you might want to publish in toptier journals

- Publishing and mobility.
- All else equal.....
- Publication record strongly related to ability to "move up" to a higher ranked institution.
- Even stronger effect for publications in top-tier journals.

Why you might want to publish in toptier journals

- Publishing and wages.
- "The Value of a Finance Journal Publication," Swidler and Goldreyer, Journal of Finance, Volume 53, Number 1, February 1998.
- All else equal.....
- Value of a first top-tier publication is as high as \$33,754 (USD).
- Additional large returns to subsequent publications.

Your work is simply more visible

How do you publish?

- Choose a good question to answer.
 - Try to address fundamental questions in finance and economics.
- Be careful of the latest "hot" topic. For example, publishing a paper on the book-to-market effect in investments or the diversification "discount" in corporate finance is likely to be difficult unless you have a pretty unique twist.
- Don't look for data first and then try to find something to do with it.
- Do look for unique institutional details or different ways to use the data that might allow for powerful tests of interesting hypotheses.

Examples using Japanese data

- Kato, Lemmon, Luo, and Schallheim (2005, JFE)
 - Exploits the rule change allowing the use of employee stock options in Japan in 1997 to examine several hypotheses about why firms grant stock options to employees.
- Gan (forthcoming, JFE and RFS)
 - Uses the decline in property values in Japan in the 1990's to identify a supply shock to lenders and traces the impact on corporate borrowers.

More publishing tips

- Tips from Rene Stulz (<u>http://www.jfe.rochester.edu</u>)
- Writing tips and paper topics from John Cochrane

(http://faculty.chicagogsb.edu/john.cochrane/res earch/Papers/)

Empirical Corporate Finance

- Capital Structure
- Ownership Structure
- Payout Policy
- M & A
- Many stylized facts:
- Event studies
- Cross-Sectional Regressions
 - Performance on structure (e.g., Tobin's Q on ownership)
 - Structure on Structure (e.g., Poison pill on ownership)

Competing Theories

- In many cases there are competing explanations that are consistent with the documented facts.
 - Not always mutually exclusive.
 - An important issue is to carefully distinguish between alternative explanations of the observed phenomena.
 - I will call this the identification issue.
 - Disclaimer: I am not attempting to advocate for either traditional or behavioral approaches. I think both are quite useful.

Stock Returns Around Seasoned Equity Issues

- Traditional View:
- Myers and Majluf (1984).
 - With asymmetric information an equity issue conveys bad news to the market.
 - Prices adjust immediately at the announcement.
 - No abnormal returns following equity issues.

Stylized Facts

- Large pre-issue runup.
 - 93% in year prior to issue (Loughran and Ritter (1997)).
- -2% to -3% price drop at announcement.
- Post Issue underperformance (Loughran and Ritter (1995)).

	First 6 Months	Second 6 Months	First	Second Year	Third Year	Fourth Year	Fifth Year	Geometric Mean, Years 1–5
Panel B. Firms Conducting SEOs								
 (5) SEO firms (%) (6) Matching firms (%) (7) t-Statistic for difference (8) Sample size 	5.6 5.7 -0.22 3,469	0.5 6.8 - 9.00 3,550	6.6 12.9 -5.59 3,561	0.1 12.3 -12.24 3,614	7.5 16.2 - 8.08 3,496	9.1 17.7 -7.35 3,154	11.8 17.4 - 4.50 2,805	7.0 15.3 -16.80 3,702

Stock Returns Around Seasoned Equity Issues

- The "New" View
- Investors become overoptimistic about some firms and push values away from fundamentals.
- Managers take advantage of these "windows of opportunity" and issue overvalued equity.
- The market reacts only partially at the announcement.
- Value continues to drift back toward fundamentals in the long run.

Behavioral Theory

- Daniel, Hirshleifer, and Subramanyam (1998).
- Investors are overconfident and have biased self attribution.
 - Good luck is skill, bad luck is just bad luck.
- Shows how underreaction can be generated by behavioral biases when arbitrage is limited.
 - Because of overconfidence investors underreact to equity issue announcement.
 - Only as more bad news accumulates do they revise downward their beliefs.

What should we really expect in an efficient market?

- Carlson, Fisher, and Giamarrino (2006).
- Real options model of firm.
- Firm consists of assets in place and an option to expand.
 - Two types of firms in the economy.
- Investors revise their beliefs over time about the value of the growth option.
- The growth option is a levered position.
 - When the option is exercised, the risk of the firm falls.
 - Standard matching techniques are not adequate to capture risk differences.

Calibrated Real Options Model

Carlson, Fisher, Giamarrino (2006)

- Where do the theories differ?
- Not clear what the behavioral theory says about dynamics of risk around equity issues.
- Real-options model says risk increases prior to issue and falls afterward.

Carlson, Fisher, Giamarrino (2006)

Capital Structure

- Traditional Theories
 - Tradeoff theory (DeAngelo and Masulis) (Tax benefits versus distress and agency costs).
 - Target capital structure.
 - Pecking order (Myers) (information problems lead to financing hierarchy: Internal funds, then debt, then equity).
- New "Behavioral" Theories
 - Market timing (Baker and Wurgler) (firms issue equity when their valuations are high and do not subsequently rebalance).
 - Inertia (Welch 2004) (the primary determinant of a firm's current leverage is past stock returns).

- Traditional tradeoff view of capital structure implies that firms rebalance their debt ratios in response to shocks.
- This implication has been questioned by recent empirical evidence.
- Lets review the stylized facts.

Partial Adjustment Models and Slow Adjustment

- Fama and French (2002): Leverage is slow to mean revert.
- Partial Adjustment Models

$$\Delta Leverage_{t} = \alpha + \beta (Leverage_{t-1} - Target_{t-1}) + \varepsilon_{t}$$

• Estimates of β range from 10-16% \rightarrow "Mean reversion is at a snail's pace"

Market Timing and Capital Structure

- Baker and Wurgler (2002): Firms fail to respond to timed equity issuances.
 - Managers time the market and issue equity when stock prices are high.
 - They do not appear to rebalance at other times.
 - Firms that have more market timing opportunities end up with low leverage.

Market Timing and Capital Structure

• Form a variable called external finance weighted market-to-book.

$$\left(\frac{M}{B}\right)_{efwa,\,t-1} = \sum_{s=0}^{t-1} \frac{e_s + d_s}{\sum\limits_{r=0}^{t-1} e_r + d_r} \cdot \left(\frac{M}{B}\right)_s,$$

- Takes on higher values if the firm raises external finance when market-to-book ratios are high.
 - Under the market-timing hypothesis this variable is negatively related to leverage.

ire

Market Timing and Capital Structure

$$\left(\frac{D}{A}\right)_t = a + b\left(\frac{M}{B}\right)_{efwa, t-1} + c\left(\frac{M}{B}\right)_{t-1} + d\left(\frac{PPE}{A}\right)_{t-1} + e\left(\frac{EBITDA}{A}\right)_{t-1} + f \log(S)_{t-1} + u_t.$$

	M/B_{e}	fwa, t-1	M_{ℓ}	B_{t-1}	PPE/	A_{t-1} %	EBITD.	A/A_{t-1} %	log	$(S)_{t-1}$	
N	Ь	t(b)	c	t(c)	d	t(d)	е	t(e)	f	t(f)	\mathbb{R}^2
			Panel A	: Book Lever	age %						
2,652			-4.36	(-15.59)	0.13	(7.30)	-0.22	(-6.44)	5.00	(16.40)	0.25
2,412	-4.93	(-8.40)	-0.86	(-1.50)	0.12	(6.63)	-0.31	(-7.41)	4.62	(15.53)	0.25
1,668	-6.49	(-9.78)	0.05	(0.07)	0.12	(5.74)	-0.32	(-7.18)	4.30	(12.40)	0.26
715	-10.81	(-10.59)	3.71	(3.23)	0.12	(3.65)	-0.38	(-5.01)	2.67	(4.82)	0.23
31,151	-7.21	(-21.20)	2.20	(3.38)	0.04	(3.62)	-0.48	(-7.20)	2.84	(21.79)	0.20
-	2,652 2,412 1,668 715	N b 2,652 2,412 -4.93 1,668 -6.49 715 -10.81	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								

Inertia and Capital Structure

- Welch (2004): Firms fail to respond to equity shocks.
 - Although they do actively issue securities.

$$ADR_t \equiv \frac{D_t}{E_t + D_t}, \qquad IDR_{t,t+k} \equiv \frac{D_t}{E_t \cdot (1 + x_{t,t+k}) + D_t},$$

 $ADR_{i+k} = \alpha_0 + \alpha_1 \cdot ADR_i + \alpha_2 \cdot IDR_{i,i+k} + \epsilon_i$

perfect readjustment hypothesis: $\alpha_1 = 1$, $\alpha_2 = 0$, perfect nonreadjustment hypothesis: $\alpha_1 = 0$, $\alpha_2 = 1$.

Inertia and Capital Structure

TABLE 3

FAMA-MACBETH REGRESSIONS EXPLAINING FUTURE ACTUAL DEBT RATIOS ADR_{1+k} with Debt Ratios ADR, and Stock Return-Modified Debt Ratios IDR_{10+k}

Horizon k (Fama- MacBeth)	Constant	IDR _{U+k}	ADR,	R^2 (%)	Cross Sectional Regressions
		A. '	Without Interce	pt	
1-year 3-year 5-year 10-year		102.1 (1.4) 94.6 (2.1) 86.7 (2.8) 68.3 (4.6)	5 (1.4) 9.5 (2.1) 18.7 (2.1) 37.7 (1.8)	96.3 90.4 86.5 80.0	87 35 33 28
		В	. With Intercep	L	
1-year 3-year 5-year 10-year	2.7 (.1) 6.8 (.3) 9.3 (.4) 13.8 (.6)	$\begin{array}{c} 101.4 \ (1.3) \\ 94.4 \ (1.5) \\ 86.9 \ (2.1) \\ 70.8 \ (3.7) \end{array}$	-5.3 (1.2) -4.2 (1.4) 5 (1.6) +6.9 (2.7)	91.3 78.4 70.2 56.0	87 35 38 28

- The common theme of these findings is that shocks to leverage have a persistent effect.
- The recent studies view this evidence as contrary to the predictions of the tradeoff theory.
- How strongly should we view this evidence as proof of the demise of the tradeoff theory?

Leary and Roberts (2005, JF) Do Firms Rebalance Their Capital Structures?

- Lets suppose a world where the tradeoff theory holds (i.e., there is a target capital structure), but there are transactions costs of rebalancing (e.g., fixed costs of issuing securities)
- What should the dynamics of leverage look like in this world?
 - Depends on the form of transactions costs.
 - Fixed.
 - Proportional.
 - Combination.

Leverage Dynamics with Adjustment Costs: Fixed Costs

• Fischer, Heinkel & Zechner (1989)

Leverage Dynamics with Adjustment Costs: Proportional Costs

Leverage Dynamics with Adjustment Costs: Fixed and Weakly Convex

Implications for Market Timing: Response to Equity Issuances

Matched Sample Comparison of Leverage for Equity Issuers vs. Non-issuers

Implications for Market Timing: Impact of Adjustment Costs on Market Timing

Baker & Wurgler (2002) All Firms Regression

 $Lev_{t} = \beta_{0} + \beta_{1}EFWA_{t-1} + \beta_{2}\left(MA/BA\right)_{t-1} + \beta_{3}\left(PPE/BA\right)_{t-1} + \beta_{4}\left(EBITDA/BA\right)_{t-1} + \beta_{5}Size_{t-1} + \varepsilon_{t}$

Estimated	EFWA		EFWA		EFWA
Underwriter Spread	Coefficient (β_1)	Z-Sore	Coefficient (β_1)	Credit Rating	Coefficient (β_1)
High Cost	-10.04	High Cost	-8.15	High Cost	-9.32
Med Cost	-7.42	Med Cost	-8.94		
Low Cost	-5.18	Low Cost	-5.64	Low Cost	-6.39

- Firms "time" equity markets and this effect is persistent.
- But, persistence more likely due to adjustment costs, as opposed to indifference.
- And, firms appear to rebalance fairly quickly (~ 2 years).

•	Statistical Power of Welch's Empirical Model							
Welch (2004) Empirical Model								
	$\frac{D_{t+k}}{D_{t+k} + E_{t+k}} = \alpha_0 + \alpha_1 \frac{D_t}{D_t + E_t} + \alpha_2$	$\frac{1}{D_t + E_t}$	$\frac{D_t}{\left(1+r_{t,t+k}\right)}$	$+ \mathcal{E}_{t,t+k}$				
			Welch (200	04) Results				
Horizon (k)		αο	α1	α2	R ²			
1-Year		0.03	-0.05	1.02	0.91			
3-Year		0.07	-0.04	0.94	0.78			
5-Year		0.09	-0.01	0.87	0.70			
10-Year		0.14	0.07	0.71	0.56			

• Empirical model has no power against alternative of tradeoff theory with adjustment costs.

Implications for Inartic.

Implications for Inertia: Statistical Power of Welch's Empirical Model

Welch (2004) Empirical Model

$$\frac{D_{t+k}}{D_{t+k} + E_{t+k}} = \alpha_0 + \alpha_1 \frac{D_t}{D_t + E_t} + \alpha_2 \frac{D_t}{D_t + E_t \left(1 + r_{t,t+k}\right)} + \mathcal{E}_{t,t+k}$$

	Reduced-Form Simulated Data					Welch (200	04) Results	
Horizon (k)	α0	α1	α2	R ²	α0	α1	α2	R ²
1-Year	0.04	-0.12	1.02	0.98	0.03	-0.05	1.02	0.91
3-Year	0.09	-0.15	0.90	0.94	0.07	-0.04	0.94	0.78
5-Year	0.13	-0.19	0.83	0.89	0.09	-0.01	0.87	0.70
10-Year	0.21	-0.25	0.68	0.78	0.14	0.07	0.71	0.56

• Empirical model has no power against alternative of tradeoff theory with adjustment costs.

Implications for Partial Adjustment Models and Slow Adjustment

• Partial Adjustment Models

 $\Delta Leverage_{t} = \alpha + \beta (Leverage_{t-1} - Target_{t-1}) + \varepsilon_{t}$

- Estimates of β range from 10-16% (Fama and French (2002)) → "Mean reversion is at a snail's pace".
- Simulated data result in estimates of 15 to 17%, despite the fact that firms are acting optimally.
- Partial adjustment models are hard to interpret when (1) adjustment is not continuous and (2) adjustments are not *Target*.

Capital Structure

- In short, dynamic versions of the tradeoff theory can create dynamics in leverage that are consistent with a large number of empirical regularities.
- Much still to be done here to better understand the frictions that create these leverage dynamics.

My views

- I think these examples illustrate some of the major challenges of moving forward in corporate finance.
- We often have different mechanisms that produce observationally equivalent matches to the stylized facts.
 - Sometimes competing traditional theories.
 - Sometimes competing behavioral theories.
 - Sometimes mixed.

My views

- Try to specify a reasonable null.
 - Is total readjustment really a reasonable benchmark?
 - What do return dynamics really look like in an efficient market with imperfect measurement?
- Consider all the implications of the theory.
 - Is it reasonable to assume that managers who are smart enough to time the market do not realize the tax and other benefits of debt?

My views

- Carefully consider where the predictions of the competing theories differ.
 - Risk dynamics compared to return dynamics.
 - Patterns in operating performance?
 - Focus directly on the security issuance decision.
- Try to construct powerful tests.
 - How good does measurement have to be to create a powerful test.
 - Simulations can be extremely useful.
 - Natural experiments.
 - Structural models with nested hypotheses.

Conclusions

- Good research will carefully specify the null that it is testing against and will design powerful tests to discriminate among competing explanations.
- I think this can be done both for traditional and behavioral theories.
- Done well, it will be publishable in the best journals.
 - Important for finance to move beyond just cataloging facts and move toward making quantitative predictions that can inform policymakers as well as other academics.