
 

 

Risk Dominance vs. Boundedly Rationality in Asymmetric 

Volunteer’s Dilemma 

 

Toshiji Kawagoea , Taisuke Matsubaeb, Hirokazu Takizawac and Tetsuo 

Yamamorid 

 

 

Abstract 

We have developed a generalized version of an asymmetric Volunteers’ Dilemma 

(VOD) game where cost for volunteering is different among players. But the prediction 

by the mixed strategy contradicts with our intuition and the experimental findings. So, 

we further analyzed the game with risk dominance as well as two boundedly rational 

models, quantal response equilibrium (QRE) and level-k model. Our analyses show that 

risk dominance and QRE predict the same direction of plays in this game, but level-k 

model and inequality aversion do not.   
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1. Introduction 

The Volunteer’s Dilemma game (VOD) was first formulated by Diekmann (1985) to 

elucidate “social dilemmas” or “social traps” broader than those covered by the 

prisoner’s dilemma (Kawagoe et al. 2015 fully characterize all the equilibria in this 

game). A typical social situation is helping behavior of people witnessing an accident or 

crime, as best exemplified by the murder case of Kitty Genovese examined by Darly 

and Latané (1968). It is said that her life could have been saved if only one of the 

bystanders had paid a small amount of cost (e.g., making an emergency call to the 

police). 

An interesting issue concerning VOD is the effect of the group size on the 

tendency to cooperate or contribute, the so called “bystander effect.” A large amount of 

evidence has been accumulated by political scientists and psychologists to investigate 

factors affecting this effect (Latané and Nida, 1981).  

On the other hand, Diekmann (1993) introduced asymmetry among players 

about cost structure and showed theoretically that in the mixed strategy equilibrium, a 

player with less cost volunteers less often. But this prediction seems to be counter 

intuitive if we consider, for example, bystander’s rescue decisions in emergencies. In 

that situation, for rescuing a drown boy, a skilled swimmer takes action less often than 

not-skilled swimmers.  

Actually, Diekmann (1993) and Healy and Pate (2009) conducted the 

laboratory experiments and confirmed that the opposite was really the case. That is, a 

player with less cost volunteers more often. Diekmann (1993) suggested an explanation 

based on risk dominance proposed by Harsanyi and Selten (1988), but his analysis 

seems to be inaccurate. 

So, we firstly provide rigorous analysis of the game based on risk dominance. 

Then, we analyze the game with two popular boundedly rational models, quantal 

response equilibrium (QRE) by McKelvey and Palfrey (1995) and level-k model (e.g., 

Crawford et al., 2013). 

We showed that prediction by QRE and level-k model is completely opposite 

from the one of mixed strategy equilibrium under certain condition. That is, a player 

with less cost volunteers more often.  

The organization of the paper is as follows. In the next section, we first present 

the model with asymmetric cost structure among players, and its mixed strategy 

equilibrium. Then, analyses of QRE and level-k model are shown. In Section 3, our 

findings are presented by using numerical examples. We conclude in the final section. 
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2. Model 

In the volunteer’s dilemma, if at least one of n players volunteers, public goods is 

provided. Benefit from public goods for player i is 𝑉𝑖, cost for volunteering for player i 

is 𝐾𝑖. When public goods is not provided, payoff for player i is 𝐿𝑖. Assume 𝑉𝑖 − 𝐿𝑖 >

𝐾𝑖 for all i. 

Each player chooses volunteering (C) or not volunteering (N). Obviously, there 

are multiple pure strategy Nash equilibria where one and only one player chooses C and 

the rest of players choose N.  

 

2.1 Mixed strategy equilibrium 

Next, we consider mixed strategy equilibrium. Here, for player i, probability of 

choosing C is 𝑝𝑖 and the probability of choosing N is 𝑞𝑖 = 1 − 𝑝𝑖. Here we consider a 

special case in which there are only two different values for benefit 𝑉𝑖 and cost 𝐾𝑖. 

Following Diekmann (1993), we call the players with low cost strong player and the 

players with high cost weak players.  

As for the number of strong players, m, only m =1 case is considered in 

Diekmann (1993). Here we generalize those analyses to arbitrary m (1 ≤ 𝑚 ≤ 𝑛). 

Without loss of generality, we assume that players 1 to m are strong and the rest of 

players are weak. 

We assume that benefit for strong player 𝑉𝑆 is greater than or equal to the one 

for weak player 𝑉𝑊 (𝑉𝑆 ≥ 𝑉𝑊), and that cost for strong player 𝐾𝑆 is strictly smaller 

than the one for weak player 𝐾𝑊 (𝐾𝑆 < 𝐾𝑊).  

Then, the mixed strategy probability of not volunteering for strong player 

becomes 

𝑞𝑆 = (
𝑉𝑆 − 𝐿𝑆

𝐾𝑆
) [(

𝐾𝑆

𝑉𝑆 − 𝐿𝑆
)

𝑚

(
𝐾𝑊

𝑉𝑊 − 𝐿𝑊
)

𝑛−𝑚

]

1
𝑛−1

. 

Similarly, the mixed strategy probability of not volunteering for weak player is as 

follows. 

𝑞𝑊 = (
𝑉𝑊 − 𝐿𝑊

𝐾𝑊
) [(

𝐾𝑆

𝑉𝑆 − 𝐿𝑆
)

𝑚

(
𝐾𝑊

𝑉𝑊 − 𝐿𝑊
)

𝑛−𝑚

]

1
𝑛−1

. 

Then, we have a generalization of Diekmann (1993)’s theory for arbitrary number of 

strong players in a group. 

 

Proposition 1. The probability of volunteering of a strong player 𝑝𝑆 is less than the 
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one of weak player 𝑝𝑊 for any m (1 ≤ 𝑚 ≤ 𝑛). 

𝑝𝑆 < 𝑝𝑊  

 

So, the outcome in the volunteer’s dilemma with asymmetric cost is inefficient in the 

sense that a strong player with less cost volunteers less often than weak players.  

 

2.2 Equilibrium selection based on risk dominance 

In this game, there are two kinds of pure strategy Nash equilibria, S-equilibrium where 

only one of the strong player chooses C, and W-equilibrium where only one of the weak 

player choses C. For the case of m = 1, Diekmann (1993) suggests that S-equilibrium is 

only risk dominant equilibrium. But it is not the case for some parameter values. 

Without loss of generality, we assume here 𝐿𝑆 =  𝐿𝑊 = 0. If S-equilibrium 

risk dominates W-equilibrium, the product of deviation loss for the former is greater 

than that for the latter (Harsanyi and Selten, 1988). This implies 

𝑉𝑆 − 𝐾𝑆

𝐾𝑆
>

𝑉𝑊 − 𝐾𝑊

𝐾𝑊
 

But for some parameter values, the above inequality does not hold. So, we need another 

rationale for our intuition that a strong player with less cost volunteers more often than 

weak players. 

 

2.3 Level-k model 

Level-k model is a non-equilibrium model that reflects strategic thinking by boundedly 

rational players. It assumes that each player adopts a strategy that corresponds to some 

level of strategic thinking. Level-k models have so far been applied to many games, and 

have succeeded in explaining a number of anomalous behaviors found in the laboratory 

(for survey, see Crawford et al., 2013).  

Assume that L0 player, who is the least rational players, chooses C and N with 

probability 1/2 respectively. We also assume 𝐿𝑆 =  𝐿𝑊 = 0. Then, L1 player’s best 

response to L0 is to choose C if and only if  

𝑉𝑖 ≥ 2𝑛−1𝐾𝑖.  

As 𝐾𝑆 < 𝐾𝑊 , if 𝑉𝑆 = 𝑉𝑊 , which is assumed in Diekmann (1993), strong player 

chooses C more likely than weak player does. So, level-k model can predict that 

S-equilibrium is more likely observed. 

 

2.4 Quantal response equilibrium (QRE) 

Quantal response equilibrium (QRE) is an equilibrium concept based on boundedly 
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rational strategic behavior, assuming that players play a noisy best response (McKelvey 

and Palfrey, 1995). We focus on symmetric equilibria. For a parameter λ ∈ [0, ∞), the 

stochastic best response in terms of choice probability of C is given by 

𝑝𝑖 =
exp (𝜆 ∙ 𝐸𝑖(𝐶))

exp (𝜆 ∙ 𝐸𝑖(𝐶)) + exp (𝜆 ∙ 𝐸𝑖(𝑁))
=

1

1 + exp [𝜆 ∙ {𝐸𝑖(𝑁) − 𝐸𝑖(𝐶)}]
 .  

where 𝐸𝑖(𝐶) and 𝐸𝑖(𝑁) are the expected payoff of strategy C and N. QRE is a fixed 

point of this mapping. 

The parameter λ ∈ [0, ∞) represents the degree of rationality such that 𝜆 = 0 

implies complete randomizing over pure strategies. If 𝜆 = 0, then 𝑝 = 1/2, which is 

usually called the centroid of the simplex of the strategy space. McKelvey and Palfrey 

(1995) show that (1) the correspondence QRE(λ) is upper hemicontinuous, (2) the 

number of QREs is odd for generic values of λ, (3) generically, the graph (λ, QRE(λ)) 

contains a unique branch which starts at the centroid and converges to a unique Nash 

equilibrium as λ goes to infinity. The limiting point of this principal branch is called 

limiting (logit) QRE. Thus, limiting QRE can serve as an equilibrium selection criterion. 

To obtain limiting QRE, one needs to run numerical simulation. So, we will show the 

results in the next section. 

 

 

3. Numerical analysis 

In the following numerical analysis, we fix 𝐾𝑆 = 20, 𝐾𝑊 = 40 and 𝐿𝑆 =  𝐿𝑊 = 0. 

Please note that any of the following numerical settings, S-equilibrium is always risk 

dominant. 

 

Case 1. 𝑉𝑆 = 60 and 𝑉𝑊 = 100.  

In this case, as 𝑉𝑆 > 2𝐾𝑆 and 𝑉𝑊 > 2𝐾𝑊, both L1 strong and weak player’s best 

response are C. So, level-k model predicts that both S- and W-equilibria equally likely 

occur. Figure 1 shows QRE correspondences for (a) two strong players and one weak 

player case and (b) one strong player and two weak players case. As you can see,  

 

Observation 1. Strong players more likely play C in both cases. 

 

But the choice probability of C is slightly lower in (b) than in (a). Thus,  

 

Observation 2. The number of strong players increases, their choice probability of C 

decreases. 
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  (a)     (b) 

Figure 1. QRE in case 1. 

 

But when we focus on equilibrium payoff, as 𝑉𝑊 = 100 > 𝑉𝑆 − 𝐾𝑆 = 40  at 

S-equilibrium and 𝑉𝑊 − 𝐾𝑊 = 60 = 𝑉𝑆  at W-equilibrium, S-player might prefer 

W-equilibrium because it provide equal payoff for both players (in two-person case).  

 

Case 2. 𝑉𝑆 = 60 and 𝑉𝑊 = 60. 

In this case, as 𝑉𝑆 > 2𝐾𝑆 and 𝑉𝑊 < 2𝐾𝑊, level-k model predicts that S-equilibrium 

occurs more likely. Figure 2 shows QRE correspondences for (a) two strong players and 

one weak player case and (b) one strong player and two weak players case. 

Observations 1 and 2 are both verified in this case. 

 

 

  (a)     (b) 

Figure 2. QRE in case 2. 

 

But as 𝑉𝑆 − 𝐾𝑆 = 60 = 𝑉𝑊 at S-equilibrium, S-players might more likely play C if 
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they are inequality averse. 

 

Case 3. 𝑉𝑆 = 35 and 𝑉𝑊 = 60. 

In this case, as 𝑉𝑆 < 2𝐾𝑆 and 𝑉𝑊 < 2𝐾𝑊, level-k model predicts that neither S- nor 

w-equilibrium occurs. Figure 3 shows QRE correspondences for (a) two strong players 

and one weak player case and (b) one strong player and two weak players case. 

Observations 1 and 2 are both verified in this case again. Remarkable observation here 

is  

 

Observation 3. Whereas the choice probability of C for strong player is significantly 

lower in (a), QRE correspondence is very similar in (b) with other cases. 

 

(a)     (b) 

Figure 3. QRE in case 3. 

 

Moreover, when we focus on equilibrium payoff, as 𝑉𝑆 − 𝐾𝑆 = 15 < 𝑉𝑊 = 60  at 

S-equilibrium, though one may think that S-player less likely plays C in this case, QRE 

predicts the opposite, that is, S-equilibrium is likely. 

 

 

5. Conclusion 

We have analyzed a generalized version of an asymmetric Volunteers’ Dilemma (VOD) 

game where cost for volunteering is different among players. But the prediction by the 

mixed strategy contradicts with our intuition and the experimental findings. So, we 

further analyzed the game with risk dominance as well as two boundedly rational 

models, quantal response equilibrium (QRE) and level-k models. Our analyses show 

that risk dominance and QRE predict the same direction of plays in this game, but 

level-k model and inequality aversion do not. For answering the question of which 
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predictions may have empirical support, it is necessary to run the experiment. It will be 

our next research. 
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