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Abstract 

This study investigates how pesticide use in neighboring farm plots affects one’s own use. 

Although it is taken for granted that there are externalities in pesticide use, very few empirical 

economic studies directly analyze this issue. Applying spatial panel econometric model to the 

plot level panel data in Bohol, the Philippines, this study shows that the pesticide use, especially 

for herbicide, is spatially correlated though there is no statistically significant spatial correlation 

in unobserved shocks. This implies that farmers apply pesticides by mimicking neighboring 

farmers’ behavior, rather than rationally responding to the intensity of infestation. 
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1. Introduction 

    Pesticides, if properly used, can enhance agricultural productivity by reducing crop damage. 

However, its inappropriate use can be a serious problem for environment, farmers’ health, and 

food safety. In addition, especially in developing countries, farmers often do not know the 

proper use of pesticides, which leads to acute and chronic poisoning and environmental 

degradation (e.g., Rola and Pingali 1993; Shetty 2004). Thus, better understanding of farmers’ 

decision on pesticide use is very important not only for academic purpose but also for policy 

makers’ perspectives to reduce improper pesticide use.  

    In the economic analysis of pesticide use, farmers are assumed to optimize their 

application amount by equalizing marginal benefit and marginal cost (e.g., Headley 1972; 

Sexton et al. 2007). However, this optimization often does not incorporate spatial externalities 

of pesticide use, and the results might not be socially optimal.  

    In the case of pesticide use, spatial externalities, i.e., neighborhood effects (e.g., Durlauf 

2004; Ioannides and Topa 2010), can matter in several ways. First, pesticide use in surrounding 

plots can affect the use in his/her own plot because it directly reduces the insect and weed 

population (“endogenous effect”). In contrast, it is also possible that neighbors’ insecticide use 

increase one’s own use because it can kill beneficial insects (Grogan and Goodhue 2012). Thus 

the expected spatial correlation can be both positive and negative. Second, insect and weed 

infestation, which are difficult for econometricians to observe accurately, can be spatially 

correlated (“correlated effect”). In this case, positive spatial correlation in usage is expected to 

respond to correlated intensity of infestation. In addition to these effects, it is possible to 

observe positive neighborhood effect because of farmers’ irrational pesticide use. If the usage 

pattern is spatially correlated without significant spatial correlation in the degree of infestation, 

it indicates that farmers simply mimic neighboring farmers’ pesticide application pattern. In this 

case, there is room for policy interventions to reduce the usage. 

    However, very few empirical studies examine spatial externalities of pesticide use directly. 

An interesting exception is Grogan and Goodhue (2012), who analyze the effect of 

landscape-level use of pesticide on individual growers’ use in the California citrus industry. 

However, in the case of Asian countries, where small-scale farming is dominant, the distribution 

of each farm plot is very complex. Thus, it is necessary to analyze plot-level data by explicitly 

incorporating geographical information to discuss externalities of pesticide use. 

    One of the straightforward ways to incorporate these spatial effects is to employ spatial 

econometric approach (e.g., Anselin 1988). Spatial econometrics is effective for agricultural and 

environmental studies, where spatial effects can be important. However, to the best of my 

knowledge, none of the studies apply this approach to the analysis of pesticide use. 

    The aim of this study is to analyze neighborhood effects of pesticide use by employing 
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spatial panel econometric approach. The advantage of the dataset is that plot-level panel data of 

agricultural input and GPS data are available. Thus, by including individual fixed effects, we 

can control for time-invariant preference parameters, which are important determinants of 

pesticide use (e.g., Pannell 1991; Liu and Huang 2013). 

 

2. Data 

    The study site is the northeastern part of Bohol Island in the Philippines. In this area, the 

Bayongan irrigation system started operation in 2008. In order to assess its socio-economic 

impact, the International Rice Research Institute (IRRI) conducted a series of household survey 

over four cropping seasons from 2009-20101. Original sampling target was randomly-selected 

847 rice farmers covering both irrigated and rainfed areas. In this survey, they collected data on 

agricultural input and output in each farmer’s main plot with its GPS coordinates as well as 

other household characteristics. After dropping missing values, household-plot level balanced 

panel data is available for 665 households. 

 

3. Empirical Strategy 

    In order to test neighborhood effects in pesticide use, this study employs spatial 

econometric models. Spatial econometric models incorporate spatial dependence and 

heterogeneity (e.g., Anselin 1988; LeSage and Pace 2008). Among these models, combined 

spatial lag and error (SAC) model with individual fixed effects (e.g., Elhorst 2014) is used for 

the purpose of this study2. The model to be estimated is: 

!! = !"!! + !!! + !! + ! + !! 
!! = !"!! + !! , 

where !! is a vector of the amount of herbicide or insecticide use, ! is an n x n inverse 

distance weight matrix (row-standardized) to capture spatial effects, !! is a set of control 

variables, !!  is period fixed effects to control for period-specific aggregate shocks, ! 

represents household-plot fixed effects, and !! is a vector of well-behaved error term. The 

coefficient on the spatial lag term, !, captures spatial correlation in pesticide use.  

After controlling for observed and unobserved characteristics, the residual !! captures the 

intensity of infestation, which can also be spatially correlated. If unobserved insect or weed 

infestation correlates spatially, ! should be positive. If ! is not significantly different from 

zero, (1) shocks are actually not spatially correlated or (2) farmers’ pesticide application is not 

based on pest infestation, which can result from using pesticides as a preventive measure. 

                                                   
1 See JICA and IRRI (2012) and Tsusaka et al. (2013) for detail. 
2 The transformation approach by Lee and Yu (2010) is used for bias correction. Because of this 
approach, the sample size reduces from NT to N(T-1). 
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The main parameters of interest are !  and ! , which captures spatial dependence 

(endogenous effect) and heterogeneity (correlated effect), respectively. As mentioned above, ! 

captures the mixture of the spillover effect of neighboring farmers’ pesticide usage and the 

response to spatially correlated pest damage. Thus the sign of this term is an empirical question. 

Note that, if there is no spatial correlation in the error term, i.e., ! = 0, there is no reason for 

the usage to be spatially correlated. Thus, if ! > 0 and ! = 0, farmers do not respond to the 

intensity of infestation, implying that they mimic neighboring farmers behavior. 

 

4. Empirical Results 

    The first 4 columns of Table 1 show the results when the dependent variable is the amount 

of herbicide used. The spatial lag term is significantly positive with and without fixed effects. In 

contrast, the spatial error term is not significant in both cases. This finding suggests that the 

farmers’ usage pattern is correlated regardless of spatially correlated shocks, implying they are 

mimicking their neighbors. The distance to the agricultural supplier in the nearest town is 

negatively associated with the usage, suggesting that the cost of buying pesticide is hindrance 

for application. Though the irrigation dummy itself is significantly positive, irrigation water 

usage is significantly negative and its magnitude is not affected very much even after 

controlling for fixed effects. This implies that irrigation water generally prevents the growth of 

weed population, but insufficient irrigation water use may rather foster it. The sign of the size of 

surveyed plot is negative, which could represent economy of scale (Liu and Huang 2013). 

Larger household size is associated with lower herbicide use, suggesting that herbicide can be 

substituted for weeding by family member. 

    The last 4 columns show the results when the dependent variable is the amount of 

insecticide used. In contrast to herbicide use, both spatial lag and error are insignificant. This is 

reasonable because the insignificant spatial lag term can result from the lack of spatially 

correlated insect infestation. Similar to herbicide case, the size of the surveyed plot has negative 

impact on the insecticide use. Interestingly, though the irrigated dummy is significantly negative, 

irrigation water use is insignificant and robust to the inclusion of fixed effects. The coefficient 

on household size is negative but insignificant, which contrasts with herbicide case. This is 

because insect infestation is more difficult to monitor or predict than weed infestation. 

 

5. Concluding Remarks 

    This study investigates the neighborhood effects in pesticide use employing spatial 

econometric approach. The estimation results show that though there is no significant spatial 

correlation in unobserved degree of pest infestation, the usage is spatially correlated especially 

for herbicide use. This finding indicates that when farmers apply pesticide, they do not respond 
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to the degree of infestation, rather mimic the neighboring farmers application. Thus, the current 

usage amount may not be optimal, and there is room for pesticide reduction. 
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Table 1: Results for Herbicide Use 
  (1) (2) (3) (4) (1) (2) (3) (4) 
MODEL OLS SAC FE SAC FE OLS SAC FE SAC FE 
 Herbicide Herbicide Herbicide Herbicide Insecticide Insecticide Insecticide Insecticide 
VARIABLES kg/ha kg/ha kg/ha kg/ha kg/ha kg/ha kg/ha kg/ha 
                  
Irrigated dummy 0.0183 0.0209 

  
-0.0263*** -0.0284** 

  
 

(0.0167) (0.0137) 
  

(0.00990) (0.0114) 
  Size of surveyed plot -0.0185** -0.0178** -0.0359** -0.0352** -0.0112** -0.0115** -0.0280* -0.0279* 

 
(0.00758) (0.00758) (0.0155) (0.0154) (0.00544) (0.00553) (0.0152) (0.0151) 

Log (irrigation water use +1) -0.0103** -0.00949** -0.0120** -0.0103** 0.00343 0.00295 0.00285 0.00246 

 
(0.00433) (0.00430) (0.00492) (0.00497) (0.00256) (0.00325) (0.00310) (0.00320) 

Hybrid dummy -0.00232 -0.00258 0.0141 0.0122 0.0179 0.0179 0.0235 0.0234 

 
(0.0166) (0.0207) (0.0150) (0.0147) (0.0200) (0.0152) (0.0205) (0.0206) 

Credit constrained -0.0234*** -0.0234** -0.00507 -0.00634 -0.00676 -0.00645 -0.000997 -0.000484 

 
(0.00897) (0.0106) (0.00894) (0.00892) (0.00905) (0.00775) (0.0116) (0.0118) 

Distance to the nearest agricultural supplier -0.00844*** -0.00603*** 
  

-0.00125 -0.00148 
  

 
(0.00137) (0.00126) 

  
(0.000953) (0.00109) 

  Age of household head 0.00303 0.00291 
  

0.00500*** 0.00505*** 
  

 
(0.00265) (0.00217) 

  
(0.00156) (0.00157) 

  Age squared (divided by 100) -0.00280 -0.00271 
  

-0.00509*** -0.00513*** 
  

 
(0.00250) (0.00201) 

  
(0.00141) (0.00145) 

  Education level of household head 0.000408 0.000357 
  

-0.00146 -0.00141 
  

 
(0.00148) (0.00121) 

  
(0.000991) (0.000884) 

  Female household head dummy -0.0166 -0.0161 
  

0.00764 0.00811 
  

 
(0.0214) (0.0162) 

  
(0.0187) (0.0117) 

  Household size -0.00680*** -0.00679*** 
  

-0.00123 -0.00131 
  

 
(0.00200) (0.00154) 

  
(0.00126) (0.00111) 

  2009 dry season dummy -0.0231*** -0.0142 -0.0192** -0.0139* 0.0118* 0.0163 0.0131* 0.0108 
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(0.00827) (0.00886) (0.00822) (0.00833) (0.00715) (0.0156) (0.00754) (0.0102) 

2010 wet season dummy -0.0100 -0.00971 -0.00756 -0.00781 0.0228*** 0.0294* 0.0236*** 0.0185* 

 
(0.00904) (0.00846) (0.00905) (0.00915) (0.00636) (0.0167) (0.00666) (0.0111) 

2010 dry season dummy -0.00953 -0.0108 -0.00785 -0.00839 0.0680*** 0.0882*** 0.0684*** 0.0534** 

 
(0.0107) (0.00901) (0.0108) (0.0110) (0.00898) (0.0282) (0.00929) (0.0254) 

Spatial lag (!) 
)  

0.619*** 
 

0.396** 
 

-0.346 
 

0.213 

  
(0.189) 

 
(0.163) 

 
(0.410) 

 
(0.325) 

Spatial error (!) 

  
-0.317 

 
0.0249 

 
0.485 

 
0.0628 

  
(0.287) 

 
(0.166) 

 
(0.321) 

 
(0.328) 

Constant 0.201*** 0.115* 0.120*** NA -0.0382 -0.0246 0.0378*** NA 

 
(0.0685) (0.0648) (0.0136) NA (0.0438) (0.0487) (0.0125) NA 

         Observations 2,660 2,660 2,660 1,995 2,660 2,660 2,660 1,995 
Log likelihood 650.4261 655.69448 1411.859 1366.1933 1522.141 1523.25 2070.159 2021.8134 

Robust standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

 

 


